скачать рефераты

МЕНЮ


Исследования в современном управлении

До появления математического моделирования в распоряжении исследователей было фактически лишь два принципиально различных метода: экспериментальный и теоретический (аналитический). В первом случае эксперименты производились либо с самой системой, либо с её физической, реальной моделью. Во втором - требовалось решать, как правило, аналитически, уравнения, описывающие всю систему.

Математическое моделирование занимает промежуточное положение: нет необходимости строить реальную физическую модель системы, её заменяет математическая модель, которая может быть записана далее на алгоритмическом языке. Это позволяет не решать сложные математические задачи, а моделировать поведение системы с помощью машинной программы (программы для ЭВМ, представленной на алгоритмическом языке). Такой подход позволяет получить целостное впечатление о сложных системах, отдельные части которых изучаются различными людьми или науками. Так, человеческий организм, отдельные его части (системы кровообращения, пищеварения, нервная система, железы внутренней секреции и т.п.), хотя и тесно связаны между собой, исследуются разными специалистами.

Науки, изучающие тот или иной конкретный класс систем (физиология нервной системы, экономика и др.), в результате глубокого проникновения в природу систем и составляющих их элементов создают основу для построения математических моделей этих систем. Кибернетика дает методы и средства для точного описания и изучения моделей, позволяющих получить целостное впечатление об их поведении.

Использование ЭВМ и методов моделирования обеспечивает кибернетике массу приложений в самых различных науках. Кибернетические методы исследований привели к превращению ряда описательных наук в точные науки. Большое значение приобретает метод математического моделирования в экономической науке.

В вероятностном, статистическом подходе к процессам управления состоит четвертая особенность кибернетики. Указанная концепция во многом взята из статистической физики. Известно, что поведение газа в сосуде определяется случайным движением отдельных молекул. Аналогично при управлении, скажем, телефонным узлом считается, что вызовы на телефонные станции - случайные события во времени, так как каждый вызов связан с большим числом факторов, учесть которые не представляется возможным. Однако, найдя статистические характеристики случайных вызовов с помощью кибернетической модели массового обслуживания, удаётся сформулировать оптимальные законы управления телефонной сетью.

В кибернетике принято, что любой процесс управления подвержен случайным возмущающим воздействиям, это в одинаковой мере относится к системе управления производством и любой технической системе. В первом случае на производственный процесс оказывает влияние большое количество факторов (состояние оборудования, качество материала, своевременность доставки комплектующих изделий и пр.), учесть которые детерминированным образом невозможно. Поэтому считается, что на производственный процесс воздействуют случайные сигналы. В силу этого планирование работы предприятия может быть только вероятностным, и обсуждать выполнение плана к определённому сроку следует с какой-то вероятностью. То есть учет стохастичности экономической системы означает признание принципиальной невозможности предвидения каждого из отклонений в отдельности, но предполагает возможность с той или иной степенью оценить их вероятность.

Пятая особенность кибернетики вытекает из факта существования универсальных алгоритмических языков, которые обеспечили построение универсальных преобразователей информации, т.е. современных электронных вычислительных машин (ЭВМ).

ЭВМ открывают неограниченные возможности автоматизации сложных процессов умственной деятельности человека. Они стали основой создания сложных автоматизированных информационно-аналитических и информационно-управляющих систем, важнейшим практическим средством и орудием исследования в кибернетике. При этом нет необходимости разрабатывать новые технические средства, реализующие те или иные алгоритмы управления для нового процесса. Достаточно познать и точно описать законы, которые управляют рассматриваемым процессом, и запрограммировать их на каком-либо из универсальных алгоритмических языков, понятных современной ЭВМ.

С кибернетикой Винера связаны такие продвижения в развитии системных представлений как:

·        типизация моделей систем;

·        выявление особого значения обратных связей в системе;

·        подчеркивание принципа оптимальности в управлении и синтезе систем;

·        осознание информации как всеобщего свойства материи и возможности ее количественного описания;

·        развитие методологии моделирования вообще и в особенности идеи математического эксперимента с помощью ЭВМ.

Все это, без преувеличения, сыграло революционную роль в развитии общественного сознания, человеческой практики и культуры, подготовило почву для того невиданного ранее размаха компьютеризации, которая происходит на наших глазах в настоящее время.

Однако необходимо воздержаться от преувеличенных оценок результатов применения винеровской кибернетики. Простое сравнение идей Винера с более ранними подходами (например, Трентовского) показывает, что кибернетика не смогла дойти до рассмотрения действительно сложных систем, что винеровской кибернетике свойственен определенный техницизм. В рассмотрении информационных процессов качественная сторона информации принесена в жертву количественной; принцип оптимальности реализуется только в полностью формализованных задачах; при моделировании интеллекта учитывается только логическая компонента мышления. Это действительно так, но все же стремление некоторых специалистов по информатике отмежеваться от винеровской кибернетики выглядит как сверхреакция на ее недостатки. Справедливее рассматривать кибернетику Винера как важный этап в развитии системных представлений, давший ценные идеи и результаты, этап на котором встретились существенные трудности и обнаружились некоторые недостатки самой теории.


4.2     Особенности управляемых систем


Одна из характерных особенностей управляемой кибернетической системы - способность изменять свое движение, переходить в разные состояния под влиянием различных управляющих воздействий. Всегда существует некоторое множество движений, из которых производится выбор предпочтительного движения. Где нет выбора, там нет и не может быть управления.

Таким образом, управляемые системы рассматриваются не в статическом состоянии, а в движении и развитии, что коренным образом изменяет подход к их изучению и в ряде случаев позволяет вскрыть закономерности, установить факты, которые иначе оказались бы не выявленными. Устойчивость как функциональное свойство управляемых систем, имеющее решающее значение для оценки работоспособности систем, было бы невозможным без уяснения динамики происходящих в них процессов.

Как уже отмечалось, управляемая система постоянно находится в движении, ей присущ динамический характер. Термин "движение" хорошо известен из механики, где он означает изменение положения какого-либо объекта в пространстве с течением времени. В кибернетике движение имеет более общий смысл, а именно: всякое изменение объекта во времени. Движением называется, например, изменение температуры тела, заряда конденсатора, объёма или давления газа, суммы текущего счёта в банке, запасов сырья на складе, наконец, жизнь и мышление.

Все объекты, явления и процессы в природе взаимосвязаны и влияют друг на друга, поэтому, выделяя какой-либо объект, необходимо учесть влияние среды на объект и объекта на среду. Следовательно, изучение поведения любой управляемой системы производится с учетом ее связей со средой.

В управляемых системах всегда присутствует орган, осуществляющий функции управления. В этом случае систему можно схематически представить в виде совокупности управляющей и управляемой частей (смотри рис.4.2). На рисунке стрелками указаны направления воздействий, которыми обмениваются части системы.

 
 








Заметим, что указанные простейшие управляемые системы никогда не являются изолированными. Они взаимодействуют с внешней средой, друг с другом, могут составлять более сложные системы, входящие в качестве элементов в управляемые и управляющие части сложных систем и образующие иерархию управляемых систем. Принцип иерархичности управления - это принцип многоступенчатого построения управляющих систем, при котором функции управления распределяются между соподчинёнными частями системы. Управляющие сигналы устройств старшего ранга носят обобщённый характер и конкретизируются в подчинённых устройствах.

Движение системы, изменение её состояния могут происходить под влиянием как внешних воздействий, так и в результате процессов, происходящих внутри системы. На каждую систему, строго говоря, оказывает влияние бесчисленное множество внешних воздействий, но далеко не все они существенны. Из множества воздействий отбирают лишь те, которые в условиях решаемой задачи существенно влияют на состояние системы. Эти внешние воздействия называют входными величинами (входными воздействиями, входными переменными системы), а элементы системы, к которым приложены входные воздействия - входами системы.

Так, на движение самолета существенно влияют следующие факторы: сила и направление ветра, плотность атмосферы, положение рулей, тяговые усилия двигателей. Все они рассматриваются как входные воздействия на самолет.

Для решения задач управления выделяют два типа входных величин: управляющие воздействия X и возмущающие воздействия M (рис.4.3). К управляющим относятся такие величины, значениями которых можно распоряжаться при управлении системой и которые можно изменять с целью осуществления движения, предпочтительного по сравнению с другими возможными движениями управляемой системы. В приведенном примере управляющими воздействиями являются воздействия, создаваемые рулевыми плоскостями, и тяговые усилия двигателей, которые пилот изменяет по своему усмотрению. Возмущающие воздействия - влияние ветра и плотности атмосферы на движение самолета.

Воздействие системы на окружающую среду характеризуется значениями ее выходных величин Y (см. рис. 4.3). Совокупность выходных величин и их изменения определяют поведение системы, позволяют руководителю оценивать соответствие движения системы целям управления. При управлении движением самолета выходными величинами служат курс и скорость движения, поскольку значения этих величин характеризуют цель управления, которая состоит в том, чтобы обеспечить прибытие самолета в заданное место и время.



Изменение входных величин, как правило, вызывает изменение выходных величин. При этом изменения последних не всегда проявляются сразу: они могут запаздывать, но никогда не опережают изменения входных величин, которые - следствие, а входные - причина движения системы.

Возмущающие воздействия, влияющие на движение системы, могут иметь не только внешнее, но и внутреннее происхождение, например, изменение свойств элементов системы после длительной работы или в результате нарушения нормального функционирования элементов системы.

Состояние любой системы с заданной точностью можно охарактеризовать совокупностью значений величин m, определяющих ее поведение, т.е. переменными состояния систем.

Эти величины позволяют сравнивать состояния отдельных систем и судить об их различии, сравнивать состояния одной и той же системы в произвольные моменты времени для выяснения ее движения. Из всевозможных форм описания состояния системы наибольший интерес представляет способ, основанный на понятии пространства состояний системы. Пространством состояний системы называется многомерное пространство, в котором каждое состояние системы изображается точкой, называемой изображающей точкой (она “изображает” данное состояние системы), координаты которой - переменные состояния системы m1,m2,...,mn.

В реальных системах не все координаты могут изменяться в неограниченных пределах. Большая часть координат принимает значения, лежащие в ограниченном интервале

m'i < mi < m"i,


где m'i и m"i - границы интервала возможных значений координаты mi.

Область пространства состояний, в которой находится изображающая точка, называется областью допустимых состояний. Говоря о пространстве состояний, имеют в виду лишь его допустимую область. Однако даже в ней не всегда любая точка изображает возможное состояние системы. Таким свойством обладает лишь непрерывное пространство состояний, соответствующее системе, координаты которой принимают любые значения (в допустимых пределах). Существуют системы (дискретные), в которых координаты принимают конечное число фиксированных значений. Пространство состояний этих систем также дискретно.

Для характеристики движения системы разделим все переменные на три группы:

*                    входные переменные, или входные воздействия X и M, представляющие сигналы, генерируемые системами, внешними по отношению к исследуемой системе, и влияющие на ее поведение;

*                    выходные переменные или переменные, характеризующие реакцию системы Y, и позволяющие описать некоторые аспекты поведения системы, представляющие интерес для исследователя;

*                    переменные (координаты) состояния m, характеризующие динамическое поведение исследуемой системы.

 
 












Учитывая относительность понятия, кибернетическую систему можно рассматривать как состоящую из частей (элементов), взаимодействующих друг с другом (рис. 4.4). В этом случае большинство выходных величин одной части одновременно являются входными величинами для другой части системы. Оставшиеся каналы остаются свободными, составляя входы и выходы всей системы в целом.

Движение системы представляют как цепь преобразований ее состояний. С одной стороны, можно полагать, что переход системы из состояния a1 в момент времени t1 в состояние a2 в момент времени t2 есть результат преобразования a1, t1 в a2, t2. С другой - можно рассматривать изменение выходных величин какой-либо системы под влиянием изменений входной величины так же, как ее преобразование.

Преобразование одного объекта в другой осуществляется посредством действия на объект оператора. Объект, подвергающийся преобразованию, называется операндом, а результат преобразования - образом. Пользуясь этими терминами, можно описать всякое преобразование следующим образом: в результате воздействия оператора на операнд получается образ.

При изучении выходной величины Y как результата преобразования входной величины X связь между Y и X записывается в форме

Y = KX,


где K - оператор, характеризующий свойства данной системы.

Если система выступает в виде безинерционного линейного преобразователя (например, электронный усилитель, механический редуктор, фотоэлемент), то оператор K преобразуется в коэффициент преобразования (коэффициент передачи) и представляет собой число k, на которое нужно умножить значение входной величины, чтобы получилось значение выходной величины преобразователя:

Y = kX.


Для нелинейного безинерционного преобразователя выходная величина является функцией от входной величины, и оператор K приобретает смысл символа F, обозначающего определенное нелинейное преобразование:

Y = F (X).


Состояние реальной системы не может измениться мгновенно, а происходит во времени в результате переходного процесса. В этом случае оператор становится сложнее и выражается не только при помощи одних алгебраических действий над операндами. Системы, переход которых из одного состояния в другое совершается не мгновенно, а в результате переходного процесса, называются динамическими системами.

Состояние, в котором находится система, когда ни одна из ее координат не изменяется, называется равновесным состоянием, которое наступает в некоторых точках пространства состояний.

Под переходным режимом понимается режим движения динамической системы из начального состояния к какому-либо установившемуся режиму -равновесному или периодическому.

Периодическим режимом называется режим, при котором система через равные промежутки времени приходит в одни и те же состояния.

Необходимым условием работоспособности динамических систем служит их устойчивость, характеризующая одну из важнейших черт поведения динамической системы и являющаяся важнейшим понятием в управлении. Это значит, что система должна нормально функционировать, быть нечувствительной к неизбежным посторонним возмущениям различного рода, т.е. работать устойчиво, несмотря на действие посторонних возмущений.

Для определения устойчивости разработаны соответствующие критерии, позволяющие найти условия устойчивости и необходимые ее “запасы” по косвенным признакам.

Рассмотрим понятие устойчивости динамической системы на примере системы установления цен на рынке с устойчивым и неустойчивым состоянием равновесия.

Пусть зависимости спроса -S и предложения P некоторого товара от цены C на рынке имеют вид, показанный на рис. 4.5, а скорость d изменения цены прямо пропорциональна разности между спросом и предложением:

d = k1 (S - P),


где k1 - коэффициент ( k1 >0 ), указывающий, на сколько возрастет цена товара в единицу времени, если разница между спросом и предложением будет равна единице.

 
 











Причины снижения спроса и увеличения предложения при повышении цены понятны. Повышение предложения при снижении цены ниже Ck возможно в частных случаях (например, при переходе на методы массового производства товара при снижении цен и росте спроса). На рис. 4.5. видно, что система имеет два равновесных состояния a1 и a2, ибо в этих точках спрос равен предложению и цена товара не изменяется (d=0). Для выяснения устойчивости состояний равновесия определим, как будет изменяться цена после случайного малого отклонения от равновесных значений C1 и C2. В точке a1 отклонению цены C от значения C1 соответствует разность S-P, которая вызывает изменение цены, восстанавливающее нарушенное равновесие; точка a1 изображает состояние устойчивого равновесия системы. В точке a2, наоборот, любое отклонение цены от C2 приводит к дальнейшему изменению в том же направлении, и состояние системы в этой точке неустойчиво.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.