скачать рефераты

МЕНЮ


Електрифікація лінії хімічної обробки соломи і розробка системи автоматичного керування

Електрифікація лінії хімічної обробки соломи і розробка системи автоматичного керування

23

Реферат.

Електрифікація лінії хімічної обробки соломи і розробка системи автоматичного керування:

Розрахунково-графічна робота

Рудич Олексія Вікторовича

м. Мелітополь

ТДАТУ, 2007р

У роботі, на підставі аналізу стану електрифікації та автоматизації лінії хімічної обробки соломи, запропоновані технічні рішення з удосконаленням даної системи, що дозволило підвищити надійність роботи електрообладнання та зменшити частину людської праці, шляхом автоматизації.

У роботі виконаний вибір і розрахунок електросилового обладнання, спроектована внутрішньо цехова силова мережа, яка живить струмоприймачі технологічної лінії, вибрані марки та перерізи проводів та кабелів, вибрана апаратура керування та захисту.

У роботі розроблені правила техніки безпеки при обслуговувані електрообладнання кормоцеху.

Виконаний техніко-економічний аналіз прийнятих рішень.

Ключові слова: двигун, лінія, схема, мережа, обладнання, кормоцех.

Зміст

Вступ………………………………………………………………..……………...3

1. Технологічна частина розрахунково-графічної роботи.

1.1. Розробка та опис структурної та функціональної схем технологічного процесу.......................................................................................................4

1.2. Вибір та розрахунок технологічного обладнання................................4

1.3. Приміщення для розташування технологічного обладнання…………..5

1.4. Розробка вимог до технологічного процесу.......................................7

2. Електротехнічна частина розрахунково-графічної роботи.

2.1. Електротехнічні вимоги управління робочими машинами.................8

2.2. Розробка схеми електричної принципової.........................................8

2.3. Вибір силового електрообладнання до робочих машин і апаратів.......11

2.4. Розрахунок пуско-захисної, контрольно-регулюючої апаратури керування об'єктом....................................................................................14

2.5. Розробка та вибір внутрішніх мереж, щитів та шафи керування........................................................................................................17

2.6. Розробка силової розподільчої мережі, плану розташування силового обладнання................................................................................................19

2.7. Розробка правил безпеки: протипожежної та роботи з електрообладнанням......................................................................................20

3. Економічна частина роботи..................................................................22

Висновки.

Література.

Вступ

Невідкладною задачею в наш час є докорінне покращення кормоприготувального виробництва і задоволення потреб тваринництва у кормах. При цьому особливе значення має забезпеченість власними кормами, покращення їхньої якості, найбільш ефективне їх використання при найменших витратах праці і матеріальних засобів.

Широкого розповсюдження набуває використання у раціонах тварин кормових сумішей, що подається з видів кормів, яке має господарство.

Приготовлені кормові суміші краще засвоюються організмом тварин, сприяють кращому росту. Кормові суміші готують у спеціальних кормоприготувальних цехах. Кормоцехи можуть виступати як окремі підприємства.

Щоб підвищити якість кормо сумішей, які готуються у кормоцехах, а також знизити відсоток участі людини у процесі, необхідно удосконалити технологічний процес, а саме розробити проекти специфікації та автоматизації технологічних процесів лінії приготування кормів.

Данна робота показує доцільність електрифікації та автоматизації технологічної лінії хімічної обробки соломи для покращення якості приготування кормо суміші та мінімалізації участі людини у процесі кормоприготування.

1 Технологія та механізація технологічного процесу

1.1 Розробка та опис структурної та функціональної схем технологічного процесу

23

Лінія хімічної обробки соломи складається:

1 - скребковий транспортер;

2 - подрібнювач-змішувач для соломи;

3 - змішувач меласи;

Скребковий транспортер переміщує солому до подрібнювача-змішувача, де відбувається подрібнення соломи і її перемішування з меласою, яка поступає зі змішувача. Таким чином відбувається приготування корму, що складається з меласи та соломи.

На основі прийнятої технології розробляємо функціональну схему технологічного процесу, яка являє собою взаємозв'язок машин у технологічному процесі. Показаний: зовнішній вигляд машин, напрямок руху продукту, а також умовне позначення струмоприймачів.

1.2 Вибір і розрахунок технологічного обладнання

Вибір технологічного обладнання виконується для прийнятого технологічного процесу, лінії хімічної обробки соломи.

Відомості про вибране технологічне обладнання заносимо в таблицю 1.1.

Таблиця 1.1. - Технологічне обладнання.

Найменування.

Призначення.

Тип.

Продуктивність т/год.

Встановлена потужність кВт

Скребковий транспортер

Переміщення соломи до подрібнювача

ТС-40М

40

3

Подрібнювач-змішувач

Подрібнення кормів з перемішуванням

ИСК-3

20-25

40

Змішувач меласи

Приготування водного розчину меласи з карбомідом

СМ-1,7

1,8

4

1.3 Характеристика приміщень за умовами технологічного процесу

Будівля кормоцеху вибирається згідно з рекомендаціями за типовим проектом.

Будівля має прямокутну форму з розмірами 12000?36000мм.

Кормоцех складається з двох приміщень:

1 - електрощитова;

2 - кормоприготувальне відділення.

Рисунок 2 - Розміщення технологічного обладнання на плані приміщення.

А - транспортер скребковий;

Б - подрібнювач-змішувач соломи;

В - змішувач меласи.

Вимоги до приміщення:

а) для всіх технологічних машин має бути передбачений електропривід;

б) приміщення кормоприготувального відділення і електрощитової повинне бути обладнане штучним освітленням;

в) у виробничому приміщенні має бути передбачена штучна вентиляція;

г) передбачити окремі приміщення для розташування силових розподільчих пристроїв, щитів та шаф керування.

На основі вимог приймаємо загальне рішення по проекту:

а) електрифікації підлягає технологічний процес обробки соломи;

б) керування технологічним обладнанням повинне бути централізованим. Для цього потрібно передбачити окрему шафу керування;

в) штучне освітлення виконати газорозрядними лампами;

г) водозабазпечення цеху виконати прив'язкою до артезіанської свердловини.

1.4 Розробка технологічних вимог до проекту технологічної лінії хімічної обробки соломи

Кормоприготувальне відділення за характером зовнішнього середовища відноситься до особливо сирих з хімічно активним середовищем. В приміщенні розташоване обладнання та освітлювальна мережа.

Підлога - бетонна, що збільшує шанси враження персоналу електричним струмом. Дане приміщення може бути охарактеризоване як особливо сире і небезпечне по можливості враження електричним струмом.

Таблиця 1.2. - Характеристика приміщень.

Найменування приміщень

Характеристика приміщень

за умовами середовища

за ступенем ураження струмом

1. Електрощитова

Сухе

З підвищеною небезпекою

2. Кормоприготувальне відділення

Особливо сире, з хімічно активним середовищем

Особливо небезпечне

2. Електротехнічна частина розрахунково-графічної роботи

2.1 Електротехнічні вимоги управління робочими машинами

Для управління робочими машинами лінії приготування корму передбачаються наступні вимоги:

Пуск лінії виконується у послідовності: 3-2-1

Управління лінією повинно виконуватись у двох режимах: ручному та автоматичному.

Для автоматизації процесу передбачені датчики наявності продукту на транспортері, і датчик рівня у змішувачі.

Включення та відключення змішувача може здійснюватись автоматично за допомогою реле часу.

Для захисту електродвигунів від КЗ та перевантажень застосовують автоматичні вимикачі.

Для аварійного відключення обладнання передбачено стопову кнопку з фіксацією.

2.2 Розробка електричної принципової схеми об'єкту.

На основі структурної схеми розроблена електрична принципова схема, яка знаходиться на листі А3 графічної частини проекту.

Схема управління лінією розбита на функціональні блоки.

В ручному режимі блок 7 вибору режиму роботи (ручний - автоматичний) впливає безпосередньо на виконавчі механізми 1, 2 та 3 через блоки 8, 9 та 10. Сигналізацію включення цих механізмів здійснюють блоки сигналізації 4, 5 та 6.

В автоматичному режимі управління виконавчими механізмами виконується датчиком 11 контролю верхнього рівня у машині 3.

Після пуску в роботу блока 3 забезпечується можливість включення у роботу блока 2 виконавчого режима через блоки пуску 9 та 10. Після запуску в роботу блока 2 можливість включення у роботу блока 1 через блоки пуску 9 та 8. Сигналізація про запуск в роботу виконавчих механізмів виконується блоками сигналізації 4, 5 та 6.

Схема працює наступним чином: після вмикання автоматичних вимикачів QF3-QF7, живлення подається на силову частину кола і на коло керування.

У ручному режимі перемикач SA переводиться у положення „Р”. При натисканні кнопки SB2 „Пуск”, замикається коло живлення котушки магнітного пускача KM3 по колу: фаза А - перемикач SA - контакти кнопок SB1 та SB2 - котушка пускача KM3 - контакт теплового реле КК3 - нульовий провід N. При цьому замикається блок-контакт KM3. Одночасно замикаються силові контакти KM3 в колі живлення двигуна М3. Двигун М3 привода змішувача отримує живлення. Контактом KM3 замикається коло живлення сигнальної лампи HL3.

При натисканні кнопки SB4 „Пуск”, отримує живлення котушка пускача KM2 по колу: фаза А - перемикач SA - SB3 - SB4 - KM2 - КК2 - N. Замиканням головних контактів KM2 в силовому колі, здійснюється подача живлення на двигун М2 привода транспортера. Про робочий стан М2 сигналізує лампа HL2.

При натисканні кнопки SB6 „Пуск”, отримує живлення котушка пускача KM1 по колу: фаза А - перемикач SA - SB5 - SB6 - KM1 - КК1 - N. При цьому замикається блок-контакт KM1, блокуючи кнопку SB6 і в колі живлення сигнальної лампи HL1 з'явиться струм. Замикаються силові контакти KM1 і здійснюється подача живлення на двигун М2.

При натисканні кнопок SB1, SB3, SB5 „Стоп” забезпечується втрата живлення котушок магнітних пускачів, розмикаються силові контакти всіх пускачів і двигуни зупиняються, а відповідні сигнальні лампи гаснуть.

У автоматичному режимі перемикач SA переводиться у положення „А”.

Отримують живлення датчик верхнього рівня BL у машині 3 та реле КL через трансформатор TV 220/12 В. При цьому замикаються контакти КL у колі живлення котушки магнітного пускача KM2 і котушки реле часу KT.

Отримують живлення котушка магнітного пускача KM3 по колу: фаза А - перемикач SA - KM3 - КК3 - N. При цьому замикаються головні контакти KM3 і двигун М3 починає працювати. Також блок-контактами KM3 замикається коло живлення сигнальної лампи HL3 і коло живлення пускача KM2.

Для контролю верхнього рівня у машині 3 передбачений датчик BL, який включений від трансформатора TV через проміжне реле КL. Доки рівень сировини в машині не досягне до заданого рівня, доти BL - замкнутий, отримує живлення котушка КL1, відповідно її контакти замкнуті. Котушка С отримує живлення по колу: фаза А - SA - KM3 - КL - KT - KM2 - KK1 - N. Замикаються контакти KM2 - вмикається двигун М2 і сигнальна лампа HL2, отримує живлення KM1 по колу: фаза А - SA - KM2 - KM1 - KK1 - N. Замикаються силові контакти KM1 і вмикається двигун М1 разом із сигнальною лампою HL1.

Автоматичний режим забезпечує послідовне вмикання машин 3 - 2 - 1. При досягненні заданого рівня у машині 3, BL - розмикає коло котушки КL. Втрачає живлення котушка пускача KM2, що приводе до зупинки М2, розмикається контакт KM2 у колі котушки KМ1, розмикаються контакти KМ1 і двигун М1 зупиняється, а М3 - продовжує працювати.

Зупинку машини 2 з зупинкою часу забезпечує програма реле часу KT. Під час роботи всіх машин лінії у заданий момент часу котушка KT отримує живлення, розмикається контакт KT у колі живлення котушки KМ2, котушка обезживлюється, і двигун М2 зупиняється. Лампа HL2 - гасне. Одночасно розмикається блок-контакт KM2 і замикається контакт KT у колі живлення котушки пускача KМ1. Котушка KМ1 знаходиться під напругою. Залишаються замкнуті її контакти KМ1, працює двигун М1.

Так забезпечується безперервна робота машини 1 за технологією.

2.3 Вибір та перевірочний розрахунок силового електрообладнання

Двигуни обираємо трифазні з короткозамкненим ротором на напругу 380В, і частоту струму 50 Гц.

Приміщення кормоприготувального відділення відноситься до особливо сирих, тому двигуни обираємо закриті, серії 4АМ, с/г виконання.

Виконуємо перевірочний розрахунок потужності силового електрообладнання для транспортеру ТС - 40М з урахуванням режима роботи за прийнятою технологією.

Потужність, що необхідна для приводу транспортера, а також вибір двигуна визначаємо за формулою:

P = (0,02…0,03)(ПL + H), (2.1)

де L - довжина транспортера, L = 4 м;

Н - висота підйому вантажу, Н = 2 м;

- ККД приводу, = 0,7;

П - продуктивність машини, П = 40000 кг/год.

P = 0,025(400004 + 2)0,7 = 2,8 кВт

Рдв. Ррм

Вибираємо стандартний двигун потужністю Рдв. = 3 кВт

Перевірка двигуна за умовами пуску

Мпдв. Мзр, (2.2)

де Мпдв. - пусковий момент, Нм;

Мзр. - момент зрушення машини Нм;

Мпдв. = МнµпkU2 (2.3)

де Мн. - номінальний момент, Нм;

µп - кратність пускового моменту, µп = 0,2;

kU2 - коефіцієнт зниження напруги у мережі, kU2 = 0,81

(2.4)

де Рн. - номінальна потужність двигуна, Рн = 3103 Вт

н - номінальна кутова швидкість, с-1;

, (2.5)

де nн. - номінальна частота обертання, nн = 1410 об/хв

рад/с

Нм

Мпдв. = 2020,81 = 32 Нм

Момент опору робочої машини

, де (2.6)

де Рм. - номінальна, необхідна для приводу транспортера, Вт

Нм

Момент зрушення робочої машини

Мзр = (0,2...0,3) Мон (2.7)

Мзр = 0,2540 = 10 Нм

Мпдв.= 32 Нм Мзр = 10 Нм

Двигун проходить за умовами пуску.

Перевірка перевантажувальної здатності

Мmax дв. МmaxРм, (2.8)

Мmax дв.= МнµmaxkU2 (2.9)

Мmax дв = 202,50,81 = 40,3 Нм

МmaxРм = Мом = 40 Нм

Мmax дв. МmaxРм

Двигун проходить за умовою.

Транспортер запускається на холостому ходу, тому перевірка двигуна за умовами мінімального опору не виконується.

Обраний двигун підходить за кліматичним виконанням СУ3, вся інші двигуни перевіряються аналогічно.

Таблиця 2.1 Вибір електросилового обладнання

Електросилове обладнання

Тип електродвигуна

Рн, кВт

nн, об/хв

, %

cos

Ki

4АМ100S4CУ3

3

1410

84

0,84

6,5

4АМ200S4CУ3

40

1470

92

0,89

6,5

4АМ100S4CУ3

4

1410

84

0,84

6,5

Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.