скачать рефераты

МЕНЮ


Повышение качества строительных материалов

Повышение качества строительных материалов

Существенное повышение качества строительных материалов, изделий и конструкций может быть достигнуто при условии совершенствования производства и методов контроля качества на всех этапах строительного производства.

Контроль качества строительных материалов, изделий и конструкций производится двумя основными способами.

1) Состоит в выявлении предельных несущих способностей объектов, что связано с доведением их до разрушения. Этот способ эффективен при проведении стандартных испытаниях образцов из стали, бетона и других конструкционных материалов. При испытании моделей сооружений и их фрагментов конструкции могут доводиться до предельных состояний. Что же касается реальных объектов, то их разрушение для выявления предельных несущих способностей экономически не всегда оправдано.

2) Связан с производством испытаний неразрушающими методами, что позволяет сохранить эксплуатационную пригодность рассматриваемого объекта без нарушения его несущей способности. Этот способ наиболее приемлем при обследовании зданий и сооружений, находящихся в эксплуатации. Неразрушающими методами можно, например, определить влажность заполнителей бетона, степень уплотнения бетонной смеси в процессе формования, плотность и прочность бетонов в изделиях, провести дефектоскопию конструкций.

Неразрушающие методы испытаний построены в основном на косвенном определении свойств и характеристик объектов и могут быть классифицированы по следующим видам:

метод проникающих сред, основанный на регистрации индикаторных жидкостей или газов, находящихся в материале конструкции;

механические методы испытаний, связанные с анализом местных разрушений, а также изучением поведения объектов в резонансном состоянии;

акустические методы испытаний, связанные с определением параметров упругих колебаний с помощью ультразвуковой нагрузки и регистрацией эффектов акустоэмиссии;

магнитные методы испытаний (индукционный и магнитопорошковый);

– радиационные испытания, связанные с использованием нейтронов и радиоизотопов;

радиоволновые методы, построенные на эффекте распространения высококачественных и сверхчастотных колебаний в излучаемых объектах;

электрические методы, основанные на оценке электроемкости, электроиндуктивности и электросопротивления изучаемого объекта;

использование геодезических приборов и инструментов при освидетельствовании и испытаниях конструкций.

Кратко рассмотрим каждый из перечисленных методов.

Метод проникающих сред.

Основаны на проверке непроницаемости кровли с помощью невязких жидких или легко обнаруживаемых газообразных сред, которые находят сквозные отверстия и каналы в водоизоляционном ковре и беспрепятственно проникают сквозь кровлю сверху вниз или наоборот. К таким методам относятся дымовой, газовый, вакуумный, а также оросительный и гидростатический методы, каждый из которых имеет определенную область применения, свои преимущества и недостатки. Дымовой метод. Предназначен для испытания рулонных кровель с механическим креплением к воздухонепроницаемому основанию.

Метод основан на закачивании под испытываемый участок водоизоляционного ковра дымовоздушной смеси от дымогенератора с помощью электрического компрессора или вентилятора через приклеенный к водоизоляционному ковру (над отверстием) патрубок. Смесь выходит в атмосферу через трещины и другие сквозные повреждения в кровле и визуально обнаруживается, указывая на места протечек. При повышении давления дымовоздушной смеси под кровлей кроме герметичности можно проверить качество ее крепления к основанию. Недостатком метода является необходимость устройства отверстий в водоизоляционном ковре для закачивания под него дыма, а преимуществом – большая площадь кровли, которая может быть испытана за один раз.

Вакуумный метод применяют при проверке непроницаемости рулонных кровель с помощью подключенной к вакуумному насосу прозрачной камеры разрежения, которая устанавливается на поверхности кровли. Недостатком метода является значительная трудоемкость, а преимуществом – возможность не только выявить точное месторасположение протечки в кровле, но и дать количественную оценку ее проницаемости. В первом случае месторасположение отверстия в кровле указывают пузырьки, появляющиеся над дефектным участком, покрытым формирующей пену специальной жидкостью, а во втором – проницаемость кровли определяют по расходу воздуха, удаляемого из камеры разрежения.

Газовый метод. Область применения метода такая же, как у дымового метода. Вместо дымовоздушной смеси в имеющуюся вентилируемую прослойку под кровлей подается легко обнаруживаемый с помощью специальных датчиков индикаторный газ (например, фреон). Данным методом можно установить факт нарушения непроницаемости кровли, но нельзя определить точное месторасположение возможной протечки. Метод отличается достаточно высокой производительностью. Оросительный метод. Применим для любых видов кровель. Метод заключается в использовании переставляемой оросительной системы или переносного разбрызгивателя, соответственно, в течение 30 и I5 минут на каждом проверяемом участке. После испытания водой протечки проявляются на потолочной поверхности покрытия. Небольшие протечки можно выявить с помощью влагомера, проверяя влажность материалов покрытия. Недостатки метода: большой расход воды и опасность замачивания нижерасположенных строительных конструкций, а преимущества – универсальность и простота осуществления. Гидростатический метод. Это традиционный метод проверки водонепроницаемости малоуклонных кровель с внутренним водостоком. Испытание осуществляют водой, заполняя ею кровлю с закупоренными водоотводящими устройствами. Если имеется протечка в кровле, то вода обязательно пройдет через нее. Если вода не будет обнаружена в конструкции под кровлей и уровень воды не падает, кровлю считают водонепроницаемой. Метод осуществим только при положительной температуре наружного воздуха. Преимущество метода заключается в отсутствии необходимости использования специального диагностического оборудования. К недостаткам метода можно отнести опасность замачивания нижерасположенных строительных конструкций и негарантированное совпадение мест протечек со скрытыми дефектами и повреждениями кровли.

Механические методы испытаний.

К механическим неразрушающим методам контроля относятся: метод пластических деформаций, метод отрыва со скалыванием и скалывания ребра конструкции и метод упругого отскока. Применение данных методов, позволяет получить достоверную оценку прочности строительных материалов, не нарушая целостность элементов конструкций. Назначение необходимого количества контролируемых участков и их расположение осуществляется в соответствии с ГОСТ 18105–86, а также из конструктивных особенностей конструкций (в наиболее нагруженных и поврежденных участках) и условий доступности к ним.

Метод пластической деформации

Ряд приборов, позволяющих определить твердость поверхностного слоя бетона с использованием метода пластической деформации достаточно разнообразен. Специалистами ООО НПП «Инженер-Строй» при проведении работ по обследованию зданий и сооружений применяются следующие приборы:

– шариковый молоток И.А. Физделя: определение прочности сводится к нанесению серии ударов по предварительно подготовленной поверхности (не менее пяти) и замеру диаметров отпечатков. После статистической обработки определяется кубиковая прочность бетона на сжатие с использованием тарировочной кривой. Прибор характеризуется малой трудоёмкостью проведения испытания, но относительно не высокой точностью показаний за счёт большой вариации силы удара.

– эталонный молоток Кашкарова: его рабочим органом является шарик подшипника диаметром 15 мм, твердостью не менее 60 HCR. Эталоном служит стальной стержень Ø 10, из арматурной стали класса А-I. Выполняя замеры диаметров отпечатков – на эталоне и на бетоне, с точностью не менее 0,1 мм, определяем их соотношение. По среднему арифметическому значению этих отношений при пяти ударах и тарировочным кривым определяем кубиковую прочность бетона на сжатие. Тарировочные кривые, составлены для бетона влажностью 2 – 6%. При отклонении фактической влажности материала от данных значений выполняется корректировка, полученных значений прочности бетона. Точность измерения прочности молотком Кашкарова составляет ±15%.

Метод упругого отскока

Метод упругого отскока заимствован из практики определения твердости металла. Для испытания бетона применяют приборы, называемые склерометрами, представляющие собой пружинные молотки со сферическими штампами. Молоток устроен так, что система пружин допускает свободный отскок ударника после удара по бетону или по стальной пластинке, прижатой к бетону. Прибор снабжен шкалой со стрелкой, фиксирующей путь ударника при его обратном отскоке. Энергия удара прибором должна быть не менее 0,75 Н-м; радиус сферической части на конце ударника – не менее 5 мм. Проверку (тарировку) приборов проводят после каждых 500 ударов.

При проведении испытаний после каждого удара берут отсчет по шкале прибора (с точностью до одного деления) и записывают в журнал. Требования к подготовке участков для испытаний, к расположению и количеству мест удара, а также к экспериментам для построения тарировочных кривых такие же, как в методе пластической деформации.

Для определения прочности бетона методом упругого отскока используем склерометр ОМШ-1. Принцип действия прибора основан на ударе с нормированной энергией бойка о поверхность бетона и измерении высоты его отскока в условных единицах шкалы прибора, являющейся косвенной характеристикой прочности бетона на сжатие.

Для поверки склерометра ОМШ-1 применяется наковальня ОН-1. Наковальня предназначена для эксплуатации в закрытых помещениях.

Наковальня состоит из массивного цилиндрического основания, в которое запрессован пуансон из закалённой стали, и направляющей гильзы, закреплённой на основании и обеспечивающей требуемое положение склерометра при ударе.

Метод отрыва со скалыванием и скалывания ребра конструкции:

Определение прочности материала осуществляется с помощью ПОС-50МГ4 «Скол». Данный метод является наиболее точным, по сравнению с другими существующими неразрушающих методов определения прочности бетона. Метод отрыва со скалыванием основан на линейной (в достаточно широком диапазоне) зависимости между сопротивлением бетона одноосному сжатию и отрыву конусного фрагмента бетона в поперечном направлении. Данный метод применяют для корректировки (тарировки) в натурных условиях градировочных зависимостей других механических средств неразрушающего контроля по ГОСТ 22690 обладающих меньшей трудоёмкостью при проведении испытаний.

Использование метода скалывания ребра позволяет определять прочность бетона путем местного (локального) разрушения (скалывания) выступающего ребра (угла). Преимущество этого способа перед методом отрыва со скалыванием состоит в том, что он не требует сверления скважин в бетоне. Метод получения значений прочности бетона путем его скалывания ребра учитывают не только прочностные свойства растворной составляющей бетона, но и влияние крупного заполнителя на его сцепление с раствором. На каждом участке проводят не менее двух сколов, расстояние между которыми в осях должно быть не менее 200 мм. Величину скола определяют как среднее арифметическое значение. Этот метод применяют для определения прочности как тяжёлого, так и лёгкого бетона в диапазоне от 10 до 70 МПа.

Акустические методы испытаний.

При определении прочности бетона ультразвуковым методом используем электронный ультразвуковой прибор Пульсар 1.1, работа которого основана на импульсном ультразвуковом методе. Этот метод относится к физическим методам определения прочности бетона, который нашел широкое применение для неразрушающих испытаний железобетонных конструкций. Данный метод основан на измерении скорости распространения в бетоне продольных ультразвуковых волн и степени их затухания.

Скорость ультразвука связана функциональной зависимостью с динамическим модулем упругости бетона первого рода.

Значение можно вычислить по формулам, если известны длина ультразвуковой волны в бетоне, поперечные размеры тела и измеренная в опыте скорость ультразвука.

Для среды, ограниченной одним измерением, т.е. для плит прозвучиваемых с торцов (λ больше габаритов),

p – плотность бетона; μ – коэффициент Пуассона, принимаемый для бетона равным 0,16–0,2.

Для среды, ограниченной двумя измерениями, т.е. для стержней, прозвучиваемых с торцов (больше поперечных размеров стержня), значение находится из выражения:

Прочность бетона на сжатие устанавливается по вычисленным значениям с помощью заранее установленных экспериментальным путем зависимостей для бетонов определенного состава. Эти зависимости обычно выражают в виде тарировочного графика «прочность бетона – динамический модуль упругости».

Следует иметь в виду, что тарировочные зависимости между и, а также между и можно использовать с достаточной точностью только для определения бетонов, для которых строились эти зависимости. Расчет прочности по тарировочным графикам, формулам и таблицам, полученным для бетонов других составов, может привести к значительным ошибкам. Точность определения прочности бетона импульсным методом с применением тарировочных кривых составляет 8 – 15%. Определение прочности бетона по скорости ультразвука производится согласно ГОСТ 17624–87 «Бетоны. Ультразвуковой метод определения прочности».

С помощью ультразвукового импульсного метода можно выявить внутренние дефекты конструкции (пустоты, каверны, участки с пониженной плотностью) и определить глубину трещин.

Метод ударного импульса

Специалистами предприятия ООО НПП «Инженер-Строй» применяется прибор ИПС – МГ4. Он предназначен для неразрушающего контроля прочности бетона, железобетонных изделий, конструкций и строительной керамики (кирпича) методом ударного импульса в соответствии с ГОСТ 22690–88. Прибор позволяет также оценивать физико-механические свойства строительных материалов в образцах и изделиях (прочность, твердость, упруго-эластические свойства), выявлять неоднородности, зоны плохого уплотнения и др. Прибор соответствует обыкновенному исполнению изделий третьего порядка по ГОСТ 12997–84*, относится к нестандартным средствам измерений и является рабочим средством измерений. Цикл замеров на одном участке состоит из 10 …15 замеров. После выполнения 15 замеров прибор автоматически производит обработку результата. Прибор производит математическую обработку результатов которая включает в себя: усреднение результатов, отбраковку результатов, более чем ±10% отклонения от среднего значения прочности на участке (изделий), усреднение оставшихся после обработки измерений. По окончанию цикла измерения прибор представляет результат.

Устройством для обнаружения дефектов методами неразрушающего контроля в изделиях из различных металлических и неметаллических материалов, является дефектоскоп. Дефектоскопы используются на транспорте, в различных областях машиностроения, в химической промышленности, нефтегазовой промышленности, в энергетике, строительстве, в научно-исследовательских лабораториях для определению свойств твердого тела и молекулярных свойств и в других отраслях; применяются для контроля деталей и заготовок, сварных, паяных и клеевых соединений, наблюдения за деталями агрегатов.

Магнитные методы испытания.

С помощью магнитометрического метода, основанного на взаимодействии магнитного поля с введенным в него ферромагнетиком – феррозондом (металлом) можно определить расположение и сечение арматуры, размер защитного слоя бетона. Магнитные методы нашли широкое применение для построения газоанализаторов на кислород, магнитная восприимчивость которого на два порядка превышает восприимчивость других газов.

Схема кулонометрической установки для определения толщины гальванопокрытий, они основаны на принципе вихревых токов, изменении магнитного потока, изменения силы притяжения магнита.

Применяют в основном для неразрушающего контроля изделий из ферромагнитных материалов, находящихся в намагниченном состоянии.

Основаны на измерении силы отрыва магнита от поверхности деталей из ферромагнитного металла, покрытых слоем немагнитного или слабомагнитного материала, либо на измерении магнитного потока в цепи, образованной сердечником электромагнита, покрытием и металлом детали.

Магнитные методы применительно к исследованию монокристаллов протеинов; характер связи металла с инсулином.

Находят широкое применение в решении проблем химии, металлургии и геологии.

Магнитопорошковая дефектоскопия изделий из ферромагнитных материалов – разработка технологий неразрушающего контроля, подбор магнитных порошков и концентратов магнитной суспензии, определение максимально достижимой чувствительности контроля, разработка технологии размагничивания деталей и конструкций сложной конфигурации, количественная оценка уровня допустимой остаточной намагниченности деталей и агрегатов. Магнитопорошковым методом могут контролироваться также стыковые сварные соединения, в том числе соединения, полученные электронно-лучевой сваркой.

– Магнитная толщинометрия – контроль толщины любых немагнитных покрытий, наносимых на ферромагнитные детали; контроль толщины магнитных покрытий (Ni, Co и др.), нанесенных на немагнитные или слабомагнитные материалы.

– Магнитная структуроскопия – контроль физико-механических характеристик; сортировка сталей по маркам; контроль качества термической обработки (структуры или твердости).

– Неразрушающий контроль небольших партий изделий с целью обнаружения тонких, невидимых глазом поверхностных дефектов материала типа трещин (закалочных, сварочных, шлифовочных, усталостных, штамповочных, литейных и др.), волосовин, флокенов, закатов, заковов, надрывов, рихтовочных трещин, некоторых видов расслоений и др.

Наряду с деталями, имеющими механически обработанные поверхности, контролю могут подвергаться детали, выплавленные методами точного литья (корковое литье, литье по выплавляемым моделям и др.). При этом обнаруживаются трещины, неспаи, рыхлоты и другие дефекты, а также цепочки пор.

Индукционный метод.

Индукционными магнитными методами измеряют по существу наведенный в детектирующих катушках потенциал, возникающий при воздействии на образец переменного поля.

Специалистами предприятия ООО НПП «Инженер-Строй» применяется прибор ИПА – МГ4, который позволяет измерять толщину защитного слоя бетона или определения диаметр арматурного стержня. Прибор оборудован выносным щупом, который плавно перемещают по поверхности контролируемого объекта, добиваясь минимального значения цифрового кода нижней строки индикатора и максимального тона звукового сигнала. Также, зная расположение оси и диаметр арматурного стержня, определяется толщина защитного слоя и соответственно наоборот, зная величину защитного слоя, определяется диаметр арматуры.

Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.