скачать рефераты

МЕНЮ


Разработка организационно-технологической схемы возведения фундамента

Разработка организационно-технологической схемы возведения фундамента

Задание 1


Определение потребности в материально-технических ресурсах при кирпичной кладке


1.1           Определить потребность в кирпиче и растворе по усредненным нормативам на смену месяц для бригады каменщиков из n человек при средней выработке V м3/смену


Потребность кирпича на смену определяется по формуле


N = 0,4*n*V, тыс. шт.     (1.1)


где

N – количество кирпича, тысяча штук

n – численность бригады

V – средняя выработка


N = 0,4*15*1,9 = 11,4 тыс. шт.


Потребность раствора на смену определяется по формуле


Q = 0,25*n*V, м3      (1.2)


Где

Q – потребность раствора, м3

n – численность бригады

V – средняя выработка



Q = 0,25*15*1,9 = 7,13 м3


Производим перерасчет полученной потребности обыкновенного кирпича на эффективный (полуторный) с помощью переводного коэффициента к = 1,35. N = 11,4*1,35 = 15,39 тыс. шт.

Согласно нормам расхода строительных материалов


N = 0,392*15*1,9 = 11,17 тыс. шт.

Q = 0,245*15*1,9 = 6,98 м3


Расход основных материалов на 1 м3 кладки

Таблица 1.1

Наименование работ

Материалы

Единица измерения

Норма расхода при толщине стен, кирпичей


1.0

1.5

2.0

2,5

Кладка стен наружных и внутренних из кирпича глиняного обыкновенного или силикатного одинарного полнотелого с простым архитектурным оформлением

Кирпич

шт.

400

395

394

392

Раствор

м3

0,221

0,234

0,24

0,245

То же из кирпича пустотелого

Кирпич

шт.

400

395

394

392

Раствор

м3

0,223

0,236

0,242

0,247

То же из кирпича глиняного и силикатного модульного

Кирпич модульный

шт.

300

295

294

292

Раствор

м3

0,205

0,216

0,222

0,227

Кладка стен наружных и внутренних из кирпича глиняного обыкновенного или силикатного одинарного полнотелого со средним архитектурным оформлением

Кирпич

шт.

405

402

400

398

Раствор

м3

0,237

0,241

0,24

0,245


1.2 Определить количество поддонов кирпича и транспортных средств для обеспечения сменной потребности в материальных ресурсах


Рабочим местом каменщиков называется пространство, в пределах которого находится возводимая конструкция или ее часть, перемещаются рабочие, а также размещены требуемые для кладки материалы, инструменты и приспособления.


Рис. 2. Схема размещения материалов на рабочем месте при кладке стен с проемами: 1 — рабочая зона; 2 — зона материала


Таблица 1.2

Тип поддона и его наименование

Номинальная грузоподъемность поддона, т

Номинальные размеры настила поддона, мм

Масса поддона, кг, не более

ПОД - поддон на опорах, деревянный

0,75

520Х1030

22

ПОМ - поддон на опорах, металлический

0,75

520Х1030

22

ПОД - поддон на опорах, деревянный

0,9

770Х1030

25

ПОМ - поддон на опорах, металлический

0,9

770Х1030

30

ПКДМ - поддон с крючьями, деревометаллический

0,75

520Х1030

22


Определяем количество поддонов необходимое за смену 11,4 / 0,4 = 28 шт.

КАМАЗ бортовой имеет небольшой размер по сравнению с фурой, однако, больший объем и грузоподъемность, по сравнению с ЗИЛами и Газелями. Эти качества являются важными для заказчика, так как есть возможность перевезти большой объем груза одновременно. КАМАЗ борт особо удобен при транспортировке крупногабаритных грузов, устойчивых к воздействию погоды, либо требующих загрузки через верх (при помощи автокранов или автопогрузчиков). Обычно КАМАЗ бортовой используется для перемещения строительных материалов. Конструкция позволяет осуществлять надежное крепление, а высокая проходимость позволит доехать до стройки и без хорошей дороги.

Сменная эксплуатационная производительность () грузового автомобиля определяется по формуле:


,   (1.3)


где

QАТС - грузоподъемность автомобиля, т;

VСР - средняя техническая скорость, км/ч;

tРС - время работы автомобиля в смену, ч.;

KИП – коэффициент использования пробега;

KИГ - коэффициент использования грузоподъемности;

LПГ – пробег автомобиля с грузом за смену, км.

tПР – продолжительность простоев автомобиля под погрузкой и разгрузкой, ч.

Коэффициент использования пробега определяется по формуле:


      (1.4)


где

LПГ – пробег с грузом за смену, км.;

LОБЩ - общий пробег за смену.

Коэффициент использования грузоподъемности определяется по формуле:


,       (1.5)


где

QФАКТ – масса фактически перевезенного груза за одну поездку, т;

QНОМИН – номинальная грузоподъемность, т.

Проверяем условие обеспечения нормальной эксплуатации автомобиля при загрузке по фактической массе перевозимого груза по формуле:


,      (1.6)


где

V – объем груза в кузове автотранспортного средства, м³;

ρ – плотность материала, т/м³;

КРХ – коэффициент разрыхления груза.

Требуемое количество автотранспортных средств на маршруте (А, шт.) определяется по формуле:


,   (1.7)


где

tР – время выполнения перевозок на маршруте конкретным АТС, ч;

tСМ – продолжительность рабочей смены, ч.

Время выполнения перевозок определяется по формуле:

,    (1.8)


где

 - общее время движения АТС, ч;

 - общее время простоя АТС под погрузкой и разгрузкой, ч.

Время движения АТС за один оборотный рейс на маршруте определяется по формуле:


,    (1.9)


где

LМ – протяженность маршрута в одном направлении, км;

Vt – средняя техническая скорость, км/ч;

LОБЩ – общий пробег, км.

Общий пробег определяется по формуле:


,   (1.10)


где

LМГ – пробег на маршруте с грузом в одну поездку, км;

LМП – пробег на маршруте в обратном направлении за грузом порожним, км;

n – количество ездок АТС на маршруте.

Количество ездок на маршруте определяется по формуле:


,   (1.11)



где

QОБЩ – масса груза планируемого к перевозке, т;

QНОМИН – номинальная грузоподъемность, т.

КИГ – коэффициент использования грузоподъемности.

Рассчитываем перевозку кирпичей с завода ДСК до строительной площадки. Расстояние между объектами составляет 10,17 км. Принимаем согласно варианту Камаз с грузоподъемностью 10 т.

Всего необходимо 11400 кирпичей (25,5 т.).

Сменная эксплуатационная производительность () грузового автомобиля:



Коэффициент использования грузоподъемности


использование эффективно.


Требуемое количество автотранспортных средств на маршруте:



Время выполнения перевозок:



Время движения АТС за один оборотный рейс на маршруте




Общий пробег:


,


Количество ездок на маршруте:





Задание 2. Разработка организационно-технологической схемы возведения фундамента


2.1 Определить энергию удара, подобрать сваебойный агрегат и показать на рисунке схему проходки для погружения свай длиной 16м, сечением 40см, несущей способностью 40тн для свайного поля с расположением свай в 2ряда


Выбор способа, типа машин (копров) и оборудования для сваебойных работ

Выбор способа погружения свай зависит от грунтовых условий, конструкции, длины и массы сваи.

Наиболее распространенным способом является ударное погружение свай с помощью падающих механических и дизель-молотов, реже паровоздушных молотов. Ударный способ рационален для погружения цельных и составных железобетонных свай сечением 0,2х0,2 - 0,4х0,4 м, длиной до 30 м в любых грунтах.

Вибропогружение эффективно при наличии рыхлых песчаных грунтов и супесчаных водонасыщенных грунтов; вибровдавливание рекомендуется при погружении в мягкопластичные, текучепластичные и текучие суглинки и глины; применение вдавливания статической нагрузкой ограничивается глинистыми грунтами текучей консистенции. В ряде случаев применяют свайные погружатели комбинированного действия, например вибромолоты, в которых используется ударная сила молота и действие вибропогружателя, или установки статического вдавливания в сочетании с вибропогружателями.

Широко распространенная ударно-вибрационная технология погружения имеет ряд недостатков: необходимость усиленного армирования свай; значительное влияние ударных и вибрационных нагрузок на рабочие органы машины, близкостоящие здания; нарушение структуры грунта и неравномерность осадок фундаментов; высокий уровень шума и вибраций при забивке свай.

Поэтому в настоящее время продолжается поиск новых, более прогрессивных и эффективных технологий устройства свайных фундаментов и способов погружения свай с использованием предварительного бурения лидерных скважин, и методом вдавливания и завинчивания свай.

Выбор молота для забивки свай и свай-оболочек производят исходя из предусмотренной проектом несущей способности сваи (сваи-оболочки), ее массы и плотности грунта. Ориентировочно масса ударной части молота должна быть при длине сваи более 12 м не меньше массы сваи, при длине до 12 м - не менее 1,5 и 1,25 ее массы (если забивка ведется соответственно в плотных и связных грунтах). Можно также пользоваться указаниями СНиПа, в которых соотношение массы молота и железобетонной сваи к расчетной энергии удара рекомендуется принимать: не менее 3 - для подвесных молотов, не менее 5 - для штанговых дизель-молотов и не менее 6 - для трубчатых дизель-молотов и молотов двойного действия. Молоты двойного действия используют для забивки и извлечения легких трубчатых металлических свай и стального шпунта.

Сваи забивают в строго определенной технологической последовательности. Последовательно-рядовая схема забивки применяется в несвязных грунтах; в глинах и суглинках она приводит к неравномерным осадкам грунта, отклонению свай от проектного положения. Концентрическая схема забивки от краев свайного поля к центру характеризуется сильным уплотнением грунта в центральной зоне и выпиранием свай, поэтому ее следует применять в слабых, водонасыщенных грунтах. Концентрическая забивка от центра свайного поля к краям рекомендуется в слабосжимаемых грунтах, при других схемах сваи в процессе забивки могут отклоняться из-за неравномерного уплотнения и обжатия грунта. При секционной схеме забивки, применяемой в связных грунтах, забивают сначала сваи в граничных рядах секций, а затем ведут последовательно-рядовую забивку в пределах секций. Такая схема забивки позволяет равномерно распределить нагрузку на грунт по всей площади свайного поля. Необходимой точности погружения свай в плане и по высоте можно добиться за счет такой организации работ и применения оптимальных проходок копровых агрегатов, при которых отклонения свай будут минимальными. Так, например, повторная добивка свай, использование секционной схемы забивки и применение наклонных свай позволяют устранить выпирание последних и отклонение их от проектного положения.

При устройстве свайных фундаментов в виде кустов свай или свайного поля в котловане вытянутой формы шириной до 18 м целесообразно использовать мостовую копровую установку конструкции ЦНИИОМТП с координатно-шаговым механизмом, имеющим программное управление.

Установка на базе крана для работ нулевого цикла может быть применена не только для забивки свай, но и для монтажа сборных элементов ростверка.

В зимних условиях, в зависимости от глубины промерзания грунта применяются следующие способы погружения свай: если толщина мерзлого слоя не превышает 0,7 м, используют более мощное сваебойное оборудование; при толщине мерзлого слоя более 0,7 м бурят лидирующие скважины, разрыхляют или протаивают грунт в местах расположения свай огневым способом, электропрогревом или паропрогревом и др.

Вечномерзлые грунты в ненарушенном состоянии обладают высокой несущей способностью. Поэтому основная задача при погружении свай - внести в эти грунты как можно меньше разрушений, а в местах, где эти разрушения все же произошли, сваи должны быть как можно быстрее "вморожены" в грунт.

В отличие от обычных условий, свайные работы в условиях вечной мерзлоты целесообразнее выполнять при мерзлом состоянии грунта, поскольку верхний слой грунтов при оттаивании затрудняет использование сваебойных и буровых установок, несмотря на подсыпку в местах расположения механизмов.

Существует два способа погружения свай в вечномерзлые грунты: в оттаянный грунт (рис. а) или в пробуренные скважины. В первом случае грунт в местах погружения свай на захватке можно оттаивать с помощью паровых игл в первой половине рабочей смены, а во второй половине - производить погружение. Как показывает практика, через несколько часов сваи прочно "вмерзают" в грунт скважины. Свая оказывается заделанной в толщу вечномерзлого грунта и приобретает высокую несущую способность.

Метод погружения свай в пробуренные скважины можно выполнять с применением обсадной трубы и без нее. В процессе выполнения работ с обсадной трубой (рис.3б) осуществляют: бурение скважины, установку обсадной трубы и закачивание песчано-глиняного раствора в объеме, необходимом для заполнения зазоров между стенками скважины и сваи после ее погружения; погружение сваи с выжиманием раствора; подъем обсадной трубы. Работы без обсадной трубы (рис.3в) предусматривают: бурение лидирующей скважины диаметром меньше на 1... 2 см диаметра сваи и забивку сваи с отжиманием грунта к стенкам сваи.

Применение лидирующих скважин позволяет повысить точность установки свай, обеспечивает погружение их на проектную глубину, предохраняет сваи от поломок при погружении.

Забивка - основной способ погружения готовых свай. Для забивки свай применяют специальные установки - копры, оборудованные механическими, паровоздушными или дизельными молотами. Механические и паровоздушные молоты в массовом строительстве постепенно заменяются гидравлическими и вибрационными дизель-молотами из-за их высокой производительности и простоты эксплуатации. Выпускавшиеся ранее копры на рельсовом и пневмоходу заменяются копровыми установками на гусеничном ходу из-за их высокой маневренности и проходимости.



Рис. 3 Схемы погружения свай в вечномерзлые грунты: а - в оттаянный грунт; б - в скважину с обсадной трубой; в - забивка в лидирующую скважину; 1 - паровая игла; 2 - свая; 3 - обсадная труба; 4 - песчано-глиняный раствор; 5 - подсыпка; 6 - лидер


Подготовительные работы включают в себя: расчистку и планировку площадки; разбивку положения свай, устройство обносок и путей передвижения копров; доставку и складирование свай, доставку оборудования; оборудование освещения площадки и рабочих мест; пробную забивку, по результатам которой корректируются схемы забивки и проект производства свайных работ.

Кроме специализированных копровых установок для погружения свай используются универсальные машины - экскаваторы, для чего их оборудуют подвешенной мачтой. Благодаря установке направляющей на стандартную крановую стрелу за короткий промежуток времени экскаватор выполняет функции сваебойной машины.


Рис.4 Погружение свай: а - с помощью экскаватора, оборудованного навесной мачтой; б - деревянных; в - железобетонных; г - стальных; д, е, ж - стального шпунта корыто -, зетобразного и плоского профиля.



Для повышения трещиностойкости железобетонные сваи рекомендуется подвергать предварительному напряжению, а перед погружением - пропитывать составами на основе нефтебитума. Металлические сваи и шпунтовые ограждения, погружаемые забивкой, покрывают антикоррозийной обмазкой.

Забивка свай ведется до получения заданного проектом отказа.

Процесс погружения сваи складывается из следующих операций: подтягивание и подъем сваи с одновременным заведением ее головной части в гнездо наголовника в нижней части молота; установка сваи в направляющих в месте забивки; забивка сваи сначала несколькими легкими ударами с последующим увеличением силы ударов до максимальной. При отклонении положения сваи от вертикали более чем на 1 % сваю выправляют подпорками, стяжками и т. п., или извлекают и забивают вновь; передвижение копровой установки и срезание сваи по заданной отметке.

Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.