скачать рефераты

МЕНЮ


Стекло и стеклянные изделия

Стекло и стеклянные изделия

СОДЕРЖАНИЕ


1.     Общие сведения

2.     Стекло и его свойства

3.     Стеклянные материалы

3.1   Листовое светопрозрачное и светорассеивающее стекло

3.2   Светопрозрачные изделия и конструкции

3.3   Облицовочные изделия из стекла

3.4   Изделия из пеностекла

3.5   Материалы на основе стекловолокна

4.     Ситаллы, шлакоситаллы и ситаллопласты

4.1   Ситаллы

4.2   Шлакоситаллы

4.3   Ситаллопласты

5.     Изделия из каменных расплавов

6.     Использование отходов в производстве плавленых изделий

Заключение

Список литературы


1. ОБЩИЕ СВЕДЕНИЯ


Стекло – все аморфные тела, получаемые путем переохлаждения расплава, независимо от их химического состава и температурной области затвердевания и обладающие в результате постепенного увеличения вязкости механическими свойствами твердых тел; причем процесс перехода из жидкого состояния в стеклообразное должен быть обратимым.

По масштабам применения первое место принадлежит строительству, в котором оно применяется не только для устройства световых приемов, но и в качестве конструктивного и отделочного материала. За 3 – 4 тыс. лет до н.э. производство стекла было известно египтянам, в этот период стекольные изделия изготовлялись путем пластического формирования и прессования. Значительное развитие получило стеклоделие в Венеции, которая оставалась мировым центром стеклоделия до XVII века. Венецианское стекло, отличающееся большой художественной ценностью, проникало в другие страны Европы и ближнего Востока.

В России в 1635 году шведом Елисеем Койотом на пустоши Духанино в Дмитровском уезде был построен стекольный завод. Вслед за Духанинским был открыт казенный завод в Измайлове (1669-1710). Здесь наряду с иноземцами работали и русские мастера, которые осваивали основные приемы европейского стеклоделия. Начало XVIII в. можно назвать периодом подъема стеклоделия. Важной вехой его развития в России явилось открытие стекольного завода на Воробьевых горах под Москвой, построенного также по инициативе Петра I. В 1706 завод уже работал. Основными видами продукции Воробьевского завода были литые зеркала и зажигательные стекла. Стекло варилось, затем выливалось на медную доску, прокатывалось медным катком, шлифовалось, полировалось и под него подводилась амальгама. При этом размеры зеркал были самыми большими в Европе того времени. Наиболее широкое развитие стеклянная промышленность получила в СССР. В годы первых пятилеток был построен ряд крупнейших стекольных заводов, в том числе заводы-гиганты в г. Гусь-Хрустальный, Горьком, Улан-Удэ, Дагестане и т.д. Основную массу продукции составляло оконное листовое стекло, его производили в мощных печах S = 650 – 700 м2. Наряду с «лодочным» способом вертикального вытягивания стекла внедряется в промышленность «безлодочный» способ, повышающий скорость вытягивания на 15 – 20 %.



2. СТЕКЛО И ЕГО СВОЙСТВА


Свойства стекла определяются прежде всего, составом входящих в него оксидов. Главными стеклообразующими оксидами являются оксиды кремния, фосфора и бора, в соответствии с чем стекла называют силикатными, фосфатными или боратными. Подавляющее большинство промышленных стекол является силикатными. Фосфатные стекольные расплавы применяют в основном для производства оптических, электровакуумных стекол, боратные – для специальных видов стекол (рентгенопрозрачных, реакторных и др.). Смешанные боросиликатные стекла применяют для изготовления оптических и термически устойчивых стеклоизделий.

Химический состав стекол в значительной степени влияет на их свойства. Строительное стекло содержит 71,5 – 72,5 % SiO2, 1,5 – 2 % Al2O3, 13 – 15 % Na2O, 6,5 – 9 % CaO, 3,8 – 4,3 % MgO и незначительное количество других оксидов (Fe2O3, K2O, SO3). Увеличение содержания оксидов Al2O3, CaO, ZnO, B2O3, BaO повышает прочность, твердость, модуль упругости стекла и снижает его хрупкость. Повышенное содержание SiO2,Al2O3, B2O3, Fe2O3 увеличивает теплопроводность. Оксиды щелочных металлов, а так же CaO, BaO повышают температурный коэффициент линейного расширения, а SiO2, Al2O3, ZnO, B2O3, ZrO2 уменьшают его. Введение в состав стекла оксида свинца взамен части SiO2 и Na2O вместо K2O приводит к повышению блеска и световой игры, что позволяет получать хрустальные изделия. Добавки фторидов и пятиокиси фосфора уменьшают светопрозрачность стекол, позволяют получать «глушенные», непрозрачные стеклоизделия. Таким образом, варьирование химического состава стекол позволяет изменить их свойства в нужном направлении в соответствии с областью их использования.

Стекло как строительный материал обладает целым рядом ценных качеств, не свойственных другим материалам, и прежде всего, светопрозрачностью при высокой плотности и прочности, в связи с чем оно является незаменимым материалом для светопроемов.

Плотность обычного строительного стекла составляет 2,5 т/м3. С увеличением содержания оксидов металлов с низкой молекулярной массой (B2O3, LiO2) плотность стекла понижается до 2,2 т/м3, с увеличением содержания оксидов тяжелых металлов (свинца, висмута и др.) плотность повышается до 6 т/м3 и более.

Прочность при сжатии стекла достигает 700 – 1000 МПа, прочность при растяжении значительно ниже – 30 – 80 МПа. Прочностные показатели изделий из стекла зависят не только от состава, но и от целого ряда других факторов: способа получения, режима тепловой обработки, состояния поверхности, размеров изделия. Низкая прочность стекла при растяжении и изгибе обусловлена наличием на его поверхности микротрещин, микронеоднородностей и других дефектов. Теоретическая прочность стекла при растяжении, рассчитанная различными способами, достигает 10000 МПа.

Для повышения прочности стекол применяют различные технологические приемы: повышение температуры отжига, закалку, травление и комбинированные методы, покрытие поверхности различными пленками, микрокристаллизация, армирование, триплексование и др. При травлении стекла плавиковой кислотой происходит растворение поверхностного слоя и удаление наиболее опасных дефектов, в результате чего прочность стекла повышается в 3 – 4 раза и более. Закаливание отожженных стекол увеличивает прочность в 4 – 5 раз. Комбинированные способы закалки и травления позволяют значительно повысить прочность стекла (до 800 – 900 МПа). Упрочнение стекла после травления путем нанесения силиконовой пленки приводит к повышению прочности стекла в 5 – 10 раз.

Термохимический способ упрочнения стекол заключается в закалке с последующей обработкой кремнийорганической жидкостью, что позволяет получить закаленное стекло с защитной кремнекислородной пленкой и прочностью при изгибе до 550 – 570 МПа.

На прочность стекла при растяжении и изгибе в значительной мере влияет размер изделия. Так, прочность на растяжение стеклянного волокна диаметром 10-3 мм достигает 200 – 500 МПа, что значительно выше показателей для массивного стекла. Воздействие длительных нагрузок снижает прочность стекла примерно в 3 раза, после чего значение этого показателя стабилизируется. Наступает так называемое явление усталости стекла, которое обусловлено влиянием окружающей среды, и прежде всего воды. Прочность стекла изменяется с изменением температуры. Стекло имеет минимальную прочность при +2000С, максимальную при – 2000С и +5000С. Увеличение прочности при понижении температуры объясняют уменьшением действия поверхностно-активных веществ (влаги), а при высоких температурах (до 5000С) возможностью появления пластических деформаций.

Модуль упругости стекол лежит в пределах 45000 – 98000 МПа. Отношение модуля упругости к прочности при растяжении (Е/Rp) – так называемый показатель хрупкости стекла – достигает 1300 – 1500 (у стали он составляет 400 – 450, у резины – 0,4 – 0,6). Чем больше показатель хрупкости материала, тем при меньшей деформации напряжение в материале достигает предела прочности.

Стекла являются типично хрупкими материалами. Они практически не испытывают пластической деформации и разрушаются, как только напряжение достигает предела упругой деформации. Хрупкость стекла – величина обратная ударной прочности. Ударная прочность при изгибе обычного стекла составляет 0,2 МПа, закаленного – 1 – 1,5 МПа. Хрупкость можно снизить увеличением содержания в стекле оксидов B2O3, Al2O3, MgO, а так же закалкой стекол, травлением кислотой и другими способами его упрочнения. Твердость обычных силикатных стекол составляет 5 – 7 по шкале Мооса. Кварцевое стекло и борсодержащие малощелочные стекла имеют большую твердость.

Теплоемкость промышленных стекол колеблется в пределах 0,3 – 1,1 кДж/(кг*0С), увеличиваясь с повышением температуры и содержания оксидов легких металлов.

Температурный коэффициент линейного расширения обычных строительных стекол сравнительно невысок, он лежит в пределах (9 – 15)*10-6 0С-1, увеличиваясь с повышением содержания в стекле щелочных металлов. Наименьший температурный коэффициент линейного расширения у кварцевого стекла: 5*10-7 0С-1.

Термостойкость стекол определяется совокупностью термических свойств (теплоемкостью, теплопроводностью, температурным коэффициентом линейного расширения), а так же размерами и формой изделия. Кварцевые и боросиликатные стекла имеют наибольшую термостойкость. Тонкостенные изделия более термостойки, чем толстостенные.

Электрические свойства стекла оцениваются объемной и поверхностной электропроводностью. Электропроводность определяет возможность применения стекол в качестве изоляторов и учитывается при расчете режимов работы стекловарных электропечей. При нормальной температуре объемная электрическая проводимость стекол мала. С возрастанием температуры она повышается. Увеличение содержания в составе щелочных оксидов, особенно оксида лития, повышает электропроводность стекол. Закалка стекол приводит к увеличению их электропроводности, кристаллизация – к ее уменьшению.

Стекло обладает просто уникальными оптическими свойствами: светопропусканием (прозрачностью), светопреломлением, отражением, рассеиванием. Светопропускание стекла достигает 92%. Оно находится в прямой зависимости от его отражающей и поглощающей способности. Показатель преломления для обычных строительных стекол составляет 1,46 – 1,51. Он определяет светопропускание стекол при разных углах падения света. При изменении угла падения света с 00 (перпендикулярно плоскости стекла) до 750 светопропускание уменьшается с 92 до 50%. Коэффициент отражения может быть снижен или увеличен путем нанесения на поверхность стекла специальных прозрачных пленок определенной толщины и с меньшим или большим показателем преломления, избирательно отражающих лучи с определенной длиной волны.

Поглощающая способность стекла в значительной степени зависит от его химического состава, увеличиваясь с повышением содержания оксидов тяжелых металлов, и от толщины изделий. Многие специальные виды стекол (например, солнцезащитные) отличаются значительным светопоглощением – до 40%.

Обычные силикатные стекла хорошо пропускают всю видимую часть спектра и незначительную часть ультрафиолетовых и инфракрасных лучей.

Поглощение ультрафиолетовой области спектра достигается увеличением содержания в стекле оксидов титана, свинца, хрома, сурьмы, трехвалентного железа и сульфидов тяжелых металлов. Поглощение инфракрасной области спектра достигается при окраске стекла Fe2+ и Cr2+. Кварцевые стекла хорошо пропускают коротковолновую инфракрасную и ультрафиолетовую области спектра, а сернистомышьяковые стекла – длинноволновые инфракрасные излучения. Для пропускания ультрафиолетовых лучей содержание оксидов железа, титана, хрома в стекольной шихте должно быть минимальным. Стекла, пропускающие рентгеновские лучи, содержат оксиды легких металлов – L2O, BeO, B2O3. Таким образом, изменяя химический состав стекол и применяя различные технологические приемы, можно получить специальные виды стекол с солнце- и теплозащитными свойствами, предопределяющими теплотехнические и светотехнические показатели светопрозрачных ограждений.

Химическая устойчивость стекол характеризует их сопротивляемость разрушающему действию водных растворов, атмосферных воздействий и других агрессивных сред. Силикатные стекла отличаются высокой стойкостью к большинству химических реагентов, за исключением плавиковой и фосфорной кислот. Химическая устойчивость силикатных стекол объясняется образованием при воздействии воды, кислот и солей защитного нерастворимого поверхностного слоя из гелеобразной кремнекислоты – продукта разложения силикатов.


3. СТЕКЛЯННЫЕ МАТЕРИАЛЫ


3.1           Листовое светопрозрачное и светорассеивающее стекло

Витринное стекло производится двух марок: М7 - полированное и М8 - неполированное, толщиной 6,5-12 мм и максимальных размеров 3000x6000 мм. Применяется для остекления витрин, витражей и окон общественных зданий. Светопропускание витринных стекол 75-83%.

Стекло листовое узорчатое имеет на одной или обеих сторонах четкий рельефный узор и изготовляется способом проката. Узорчатое стекло бывает бесцветным и цветным, окрашенным в массе или нанесением на поверхность его пленок оксидов различных металлов. Применяется для декоративного остекления оконных и дверных проемов, внутренних перегородок, крытых веранд и т.д. Для этих же целей применяется листовое стекло "мороз", имеющее на одной стороне узор, напоминающий заиндевевшее стекло.

Армированное листовое бесцветное и цветное стекло для устройства световых проемов, фонарей верхнего света, ограждений в зданиях и сооружениях различного назначения. Армированное стекло может иметь обе поверхности или одну поверхность гладкими, рифлеными или узорчатыми. Для армирования применяется сварная или крученая сетка из стальной проволоки со светлой поверхностью или с защитным алюминиевым покрытием. Диаметр проволоки сетки 0,45-0,60 мм. Сетка имеет квадратные или шестиугольные ячейки размерами 12,5 и 25 мм. Армированное стекло отличается повышенной прочностью и огнестойкостью. Светопропускание бесцветного армированного стекла 65-75%.

Увиолевое стекло пропускает 25-75% ультрафиолетовых лучей и применяется для остекления оранжерей и заполнения оконных проемов в детских и лечебных учреждениях. Такое стекло получают из шихты с минимальными примесями оксидов железа, титана, хрома.

Закаленное стекло представляет собой листовое или другой формы стекло с повышенной механической прочностью и термической устойчивостью. Используют для остекления дверей, перегородок, ограждения лифтовых шахт, балконов, лестниц, а так же для изготовления электронагреваемых не замерзающих стекол. Толщина более 5 мм, оно выдерживает удар свободно падающего стального шара массой 800 гр. с высоты 120 см. Безопасно. Осколки этого стекла имеют тупые ребра и края.

Многослойное стекло (триплекс), армированное или неармированное, состоит из нескольких листов стекла, прочно склеенных между собой прозрачной эластичной прокладкой, чаще всего из поливинилбутирольной пленки. При ударе оно не дает осколков и является безопасным.

Теплопоглощающее стекло предназначено для защиты интерьеров зданий от воздействия прямого солнечного излучения и уменьшения солнечной радиации в помещениях. Стекла голубого, серого и бронзового оттенков получают введением в состав стекломассы оксидов кобальта, железа или селена. Задерживая большое количество инфракрасных лучей, стекло нагревается и подвергается большим температурным деформациям. Поэтому при остекленении следует предусматривать достаточный зазор между рамой и стеклом.

Применяется с целью уменьшения нагрева солнцем помещений жилых, культурных, общественных и промышленных зданий.

Теплоотражающее стекло применяется для нагрева помещений от солнечных и тепловых лучей. Изготавливается нанесением на поверхность тонких (0,3-1 мкм) пленок металлов и их оксидов. Светопропускание стекол 30-70%, а пропускание тепла 40-60%. В связи с тем, что в таких стеклах большая часть инфракрасных лучей не поглощается, а отражается, само стекло почти не нагревается. Вследствие уменьшения излучения из помещения они повышают теплозащиту зимой. Стекла имеют различную окраску: золотистую, голубую, оранжевую и др.

Электропроводящее стекло применяется в строительстве для стеклопакетов, используемых как источники тепла. Электропроводящие прозрачные покрытия наносятся на стекло с целью обогрева стекла и предотвращения запотевания. Покрытие получают напылением на поверхность стекла тонкой (0,5 мкм) пленки солей металлического серебра. Стекло устойчивое к радиоактивным излучениям применяется при строительстве АЭС и предприятий по изготовлению изотопов. Для поглощения радиоактивных лучей используются стекла с высоким содержанием свинца и бора. Например, тяжелое свинцовое стекло плотностью 6200 кг/м3,содержащее 80% оксида свинца, по своей защитной способности в этом отношении эквивалентно стали.


3.2           Светопрозрачные изделия и конструкции


Кроме листового светопроницаемого стекла в строительстве применяются светопрозрачные изделия и конструкции: стеклоблоки, стеклопрофилит, стеклопакеты, стеклобетонные конструкции и стеклянные трубы.

Блоки стеклянные пустотелые, блоки обладают хорошей стекло рассеивающей способностью, а выполненные из них световые проемы и перегородки имеют хорошие тепло- и звукоизоляционные свойства. Блоки состоят из двух отпрессованных половинок, которые свариваются между собой. Наиболее распространенные виды стеклянных блоков имеют на внутренней стороне рифления, придающие блокам светорассеивающую способность (рисунок 1). Светопропускание - не менее 65%, светорассеивание - около 25%, коэффициент теплопроводности - 0,4 Вт/(м · °С).

Панели из профильного стекла (стеклопрофилит). Отечественной промышленностью освоен выпуск профилированных стеклянных изделий больших размеров. Подобные изделия имеют коробчатый, ковровый, ребристый и другие профили и используются для монтажа светопропускающих перегородок и перекрытий.

Стеклобетонные конструкции представляют собой бетонную обойму, внутри которой на растворе уложены стеклянные блоки. Эти конструкции несгораемы и препятствуют распространению огня. В промышленном строительстве стеклянные блоки применяют для устройства окон. В жилых и общественных зданиях пустотелые стеклянные блоки используют для заполнения наружных световых проемов, остекления лестничных клеток, а также для устройства светопрозрачных перекрытий и перегородок.

Стеклопакеты в индустриальном строительстве находят все большее применение. Они состоят из двух или трех листов стекла, между которыми образуется геометрически замкнутая воздушная полость. Стекло пакетное остекление обладает хорошей тепло- и звукозащитной способностью, оно не запотевает и не нуждается в протирке внутренних поверхностей. В зависимости от назначения стеклопакеты могут быть выполнены с применением оконного, закаленного, отражающего или других видов стекла.

Стеклянные трубы в ряде случаев (например, в условиях химической агрессии) могут оказаться эффективнее металлических. Они обладают высокой химической стойкостью, гладкой поверхностью, прозрачны и гигиеничны. Благодаря этим высоким качествам их широко используют в пищевой и химической промышленности. Основными недостатками стеклянных труб следует считать хрупкость, т.е. слабое сопротивление изгибу и ударам, а также невысокую термостойкость (около 40°С). В последнее время на основе боросиликатных стекол получены термостойкие трубы с малым тепловым расширением.

Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.