скачать рефераты

МЕНЮ


Буровые установки глубокого бурения

При ликвидации скважины со спущенной эксплуатационной колонной, выполнившей свое назначение, в ней должен быть уста-новлен цементный мост высотой не менее 50 м непосредственно над зоной фильтра последнего объекта с закачкой цементного.раствора под давлением в эту зону (при приемистости пласта).

При ликвидации скважин, имеющих в конструкций промежу-точные или эксплуатационные колонны, спущенные отдельными

секциями, должны быть установлены цементные мосты в интерва-лах стыковки секций на 20--30 м ниже и выше мест стыковки.

При ликвидации скважин, в конструкции которых имеются спущенные хвостовики, за которыми цементный раствор полностью не поднят или не перекрыты башмаки предыдущих колонн, долж-ны быть установлены цементные мосты на 20--30 м ниже и выше головы хвостовика.

Во всех ликвидируемых скважинах ив последней обсадной колонне, связанной с устьем скважины, должен быть установлен цементный мост высотой не менее 50 м с расположением кровли цементного моста на 3--5 м ниже уровня дна моря.

Допускается извлечение промежуточных и эксплуатационных обсадных колонн из ликвидируемых скважин; при этом над голов-кой оставшейся части каждой извлекаемой обсадной колонны дол-жен быть установлен цементный мост высотой не менее 50 м.

Порядок оборудования устья скважины.

При ликвидации скважин, пробуренных с ПБУ, необходимо обре-зать все обсадные колонны ниже дна моря и заполнить устье скважины цементным раствором до уровня дна моря; при этом подвесные колон-ные головки и буровая плита поднимаются на борт ПБУ (рис. 25).

Снятие ПБУ с точки бурения без выполнения вышеизложен-ных требований запрещается.

После снятия ПБУ с точки бурения следует обследовать дно с целью выявления навигационных подводных опасностей. Один экземпляр акта обследования должен быть передан в соответствующую гидрографическую службу.

После завершения работ по ликвидации скважины геологиче-ская служба ПБУ должна составить "Справку о производстве ликви-дационных работ на скважине", в которой необходимо указать:

-- фактическое положение цементных мостов и результаты их испытаний;

-- параметры жидкости, которой заполнен ствол скважины;

-- расположение устья скважины и его оборудование;

-- фактическую высоту части обсадной колонны, оставленной над уровнем дна моря;

-- объем и состав незамерзающей жидкости в приустьевой части ствола скважины (в случае необходимости).

К справке прилагается один экземпляр акта обследования дна моря с целью обнаружения навигационных подводных опасностей.

10 Правила ликвидации ГНВП и последовательность действий при

возникновении ГНВП

1) В случае неуверенности в ГНВП, необходимо остановить насосы, при этом забойное давление снизится (не будет динамической составляющей) и проявление должно сразу проявиться, если оно имеет место.

2)При наличии проявления следует, как можно скорее, загерметизировать скважину, так как максимальные давления, которые будут возникать при ликвидации проявления, будут тем больше, чем больше объем поступившего флюида.

Порядок действий при герметизации скважины: остановить вращение ротора;

· поднять инструмент так, чтобы замковое соединение не находилось в зоне плашек превентора;

· остановить насосы;

· открыть гидроуправляемую задвижку на линии ведущей к открытому дросселю;

· закрыть превентор;

· медленно закрыть дроссель или задвижку на выходе превентора, следя за тем, чтобы давление в обсадной колонне не превышало допустимое давление разрыва труб или гидроразрыва пород.

3) регистрация давлений:

- дать возможность и время избыточным давлениям в бурильных трубах и КЗП
стабилизироваться. Для этого требуется не более 5-10 минут. Затрачивать больше
времени не допускается, так как в случае газопроявлений всплывающая пачка будет
вносить значительные погрешности, также возможен случай, когда проявляющий
пласт является плохопроницаемым, то есть он не сразу передал свое давление,
следовательно, мы не верно определим пластовое давление и рассчитаем плотность
раствора, требуемую для глушения скважины, что приведет к новому проявлению и
потребуется второй цикл, но ждать больше 10 минут нельзя, так как это может
всплывать газовая пачка;

- необходимо записать избыточное давление в трубах и затрубье, объем
проявления, который равняется увеличению объема с приемной емкости, это значение
используется для расчета максимальных ожидаемых давлений при глушении
скважины. В случае наличия в бурильных трубах обратного клапана избыточное
давление в трубах можно определить с помощью цементированного агрегата,
закачивая раствор в трубы с малой производительностью.

4) Выбор производительности насосов и давления глушения
Производительность обычно берут вдвое меньше, чем при бурении.

11 Техника безопасности при ликвидации аварий в бурении

Наиболее сложные аварии в бурении: прихват инструмента; обрыв или слом инструмента;

· заклинивание инструмента в суженной части ствола;

· падение инструмента.

Проверить исправность вышки, талевой системы контроль измерительных
приборов;

Уберите с мостков и рабочей площадки ненужный инструмент и освободите
проходы;

Проверьте наличие и исправность противопожарного инвентаря перед работами;

Проверьте перед сборкой ловильного инструмента его состояние и запишите
основные размеры;

Использовать только тот л обильный инструмент, который соответствует по
своим техническим характеристикам виду аварии и геологическим условиям в
скважине.

12 Техника безопасности при эксплуатации цементировочного

оборудования

Эксплуатация цементировочного оборудования должна осуществляться в соответствии с требованиями эксплуатации. Нарушение правил эксплуатации часто приводит к авариям (возможны человеческие жертвы). Поэтому до начала эксплуатации оборудования необходимо тщательно проверить все узлы оборудования, замеченные неисправности необходимо устранить, спрессовать манифольдные линии на 1,5 кратное рабочее давление. При сборке манифольдных линий необходимо прочистить все резьбовые соединения. Это обеспечит герметичность соединения и надежность работы. Необходимо проверить надежность предохранительного клапана. Выхлоп от клапана должен идти в приемный бак. Выхлопная труба от ДВС должна иметь искрогаситель. Для работы на агрегатах необходимо применять спецформу и рабочие рукавицы.

13 Практические занятия на тренажере DS-200

Практику проходил на буровом тренажере фирмы "Simtrer" Компоненты DS-200:

буровой манифольд;

· пульт управления сухопутным превентором;

· пульт управления морским превентором;

· пульт управления буровым оборудованием;

· пульт контроля процесса бурения;

· пульт управления дистанционным штуцером;

· штуцерный манифольд;

· блок автоматического режима бурения;

· компенсатор буровой колонны; пульт натяжения райзера; пульт управления дивертором.

Основные упражнения, отработанные на тренажере: осуществление углубления скважины при заданных параметрах бурения.

14 СПБУ "Мурманская"

Основные характеристики СПБУ "Мурманская":

· установка создана на базе установки типа "Шельф";

· общее водоизмещение 14800 тонн;

· высота опор 126 метров;

· глубина моря до 100 метров;

· вертолетная площадка;

· четыре якоря: два носовых по 10 тонн и два кормовых по 7 тонн;

· четыре шлюпки вместимостью по 42 человека по двум бортам;

· высота над уровнем моря 15 метров.

На установке имеются два комбинированных превентора на 700 атм., один из которых универсальный. За последний год произошла модернизация: был установлен верхний привод (TOP DRIVE) с наддувом воздухом, который намного эффективнее ротора. Может выполнять роль АКБ. Имеется манифольдная линия на 105 атм. рабочего давления. Также есть емкости для бурового раствора по 56 м3 и столько же запасных. Запас пресной воды по 100 и 300 тонн. Имеется опреснительная установка с производительностью 20 тонн в сутки. Модернизирован цементный отсек с емкостями для хранения сухого цемента, имеется три буровых насоса и два цементных агрегата. В процессе просмотра видеофильма мы наблюдали процесс отбора керна. Шла сборка керноприемного снаряда. После сборки спускали инструмент в скважину, произвели отбор керна, подняли керноприемный снаряд, разобрали его, подняли керноприемную трубу, спустили на керноприемный мост, отвернули кернорватель и приподняли трубу. Вынули керн из трубы.

ПРИГОТОВЛЕНИЕ БУРОВЫХ РАСТВОРОВ

В практике бурения скважин используются разнообразные технологические приемы для приготовления буровых раство-ров.

Наиболее простая технологическая схема (рис. 7.2) вклю-чает емкость для перемешивания компонентов бурового рас-твора 1, оснащенную механическими и гидравлическими пе-ремешивателями 9, гидроэжекторный смеситель 4, оснащен-ный загрузочной воронкой 5 и шиберным затвором 8, центробежный или поршневый насос 2

(обычно один из подпорных насосов) и манифольды.

С использованием этой схемы приготовление раствора осуществляется следующим образом. В емкость 1 заливаю расчетное количество дисперсионной среды (обычно 20-30 м3) и с помощью насоса 2 по нагнетательной линии с движкой 3 подают ее через гидроэжекторный смеситель 4 п замкнутому циклу. Мешок 6 с порошкообразным материа-лом транспортируется передвижным подъемником или транспортером на площадку емкости, откуда при помощи двух рабочих его подают на площадку 7 и вручную переме-щают к воронке 5. Ножи вспарывают мешок, и порошок высыпается в воронку, откуда с помощью гидровакуума по-дается в камеру гидроэжекторного смесителя, где и происхо-дит его смешивание с дисперсионной средой. Суспензия сли-вается в емкость, где она тщательно перемешивается механи-ческим или гидравлическим перемешивателем 9. Скорость подачи материала в камеру эжекторного смесителя регулиру-ют шиберной заслонкой 8, а величину вакуума в камере -сменными твердосплавными насадками.

Круговая циркуляция прекращается лишь тогда, когда смешано расчетное количество компонентов и основные технологические показатели свойств раствора близки к рас-четным. Если раствор приготавливают впрок, то его готовят порционно, а порции откачивают в другие емкости циркуля-ционной системы либо в специальные запасные.

Утяжеление бурового раствора порошкообразным бари-том и обработку порошкообразными химическими реаген-тами осуществляют аналогично после приготовления порции исходной коллоидной системы (например, водоглинистой).

Зарубежные фирмы обычно оборудуют гидроворонки аэ-рожелобом или вибратором для побуждения течения порош-ка и обеспечения более равномерной его подачи в зону сме-шения.

Основной недостаток описанной технологии -- слабая ме-ханизация работ, неравномерная подача компонентов в зону смешения, слабый контроль за процессом. По описанной схеме максимальная скорость приготовления раствора не превышает 40 м3/ч.

В настоящее время в отечественной практике широко ис пользуют прогрессивную технологию приготовления буров растворов из порошкообразных материалов. Технология основывается на применении серийно выпускаемого оборудования: блока приготовления раствора (БПР), выносного гидроэжекторного смесителя, гидравлического диспергатора, ем-кости ЦС, механических и гидравлических перемешивателей, поршневого насоса.

Блок БПР предназначен для приготовления и утяжеления бурового раствора, а также хранения на буровой запаса по-рошкообразных материалов. Выпускается несколько типов БПР, отличающихся вместимостью бункеров для хранения материалов.

Наиболее широко применяется БПР, выпускаемый Хадыженским машзаводом. Он представляет собой (рис. 7.3) два Цельнометаллических бункера 1, которые оборудованы раз-грузочными пневматическими устройствами 7, резиноткане-выми гофрированными рукавами 3 и воздушными фильтрами <?* В комплект БПР входит выносной гидроэжекторный сме-ситель 4, который монтируется непосредственно на емкости ЦС и соединяется с бункером гофрированным рукавом.

ОЧИСТКА БУРОВОГО РАСТВОРА ОТ ГАЗА

Газирование бурового раствора препятствует ведению нормального процесса бурения. Во-первых, вследствие сни-жения эффективной гидравлической мощности уменьшается скорость бурения, особенно в мягких породах; во-вторых, возникают осыпи, обвалы и флюидопроявления в результа-те снижения эффективной плотности бурового раствора (а следовательно, и гидравлического давления на пласты); в-третьих, возникает опасность взрыва или отравления ядо-витыми пластовыми газами (например, сероводородом).

Попадающий в циркуляционный поток газ приводит к из-менению всех технологических свойств бурового раствора, а также режима промывки скважины. Кроме очевидного уменьшения плотности раствора изменяются также его рео-логические свойства -- по мере газирования раствор стано-вится более вязким, как и всякая двухфазная система. Пу-зырьки газа препятствуют удалению шлама из раствора, по-этому оборудование для очистки от шлама работает неэф-фективно.

Кислые газы, такие как двуокись углерода, могут привести к понижению рН раствора и вызвать его флокуляцию.

Снижение гидравлической мощности вследствие присутст-вия в растворе газа отрицательно сказывается на всем про-цессе бурения. Оптимизированные программы бурения тре-буют, чтобы на долоте срабатывалось до 65 -- 70 % гидравли-ческой мощности. Но снижение объемного коэффициента полезного действия насоса в результате газирования бурового раствора влечет за собой существенное уменьшение подачи насосов, так как

N~pQ,

где N -- гидравлическая мощность; Q, р -- соответственно подача и давление, развиваемые буровыми насосами.

Как видно из рис. 7.25, зависимость гидравлической мощ-ности от степени газирования (объемная доля) бурового рас-твора весьма заметна. Так, при содержании (объемной доле) газа, равном 2 %, снижение гидравлической мощности со-ставляет 5,6 %.

Чтобы свести к минимуму вредное влияние самопроиз-вольного газирования бурового раствора, необходимо знать условия проникновения газа в него и их физико-химическое взаимодействие.

Газ из пласта попадает в буровой раствор в результате от-рицательного дифференциального давления между скважиной и пластом либо вследствие высокой скорости бурения, когда пластовый газ не успевает оттесниться фильтратом от забоя и стенок скважины и попадает в поток раствора вместе с выбуренной породой.

Газ в буровом растворе может находиться в свободном, жидком и растворенном состоянии. По мере перемещения потока раствора к устью пузырьки свободного газа увеличи-ваются в объеме в результате снижения давления, сливаются друг с другом, образуя газовые пробки, которые прорывают-ся в атмосферу. Свободный газ легко удаляется из раствора в поверхностной циркуляционной системе путем перемешива-ния в желобах, на виброситах, в емкостях. При устойчивом газировании, например во время бурения при несбалансиро-ванном давлении, свободный газ удаляют из бурового раство-ра с помощью газового сепаратора.

Пузырьки газа, которые не извлекаются из бурового рас-твора при перепаде давления между ними и атмосферой, оказываются вовлеченными в буровой раствор и для их удаления

требуется дополнительная энергия.

Полнота дегазации буровою раствора зависит от его плотности, количества твердой фазы, вязкости и прочности структуры. Существенную роль играют также поверхностное натяжение жидкости, размер пузырьков и силы взаимного притяжения.

В связи с высоким поверхностным натяжением трудно поддаются дегазации буровые растворы на углеводородной основе, а также растворы, содержащие в качестве регулятора водоотдачи крахмал. Некоторые углеводороды, проникая из пласта в буровой раствор при повышенных температуре и давлении, остаются в жидком состоянии. Попадая в другие термодинамические условия, например в поверхностную цир-куляционную систему, они превращаются в газ и заметно из-меняют технологические свойства бурового раствора.

Некоторые газы при повышенных температуре и давлении проникают в межмолекулярную структуру бурового раствора и вызывают едва заметное увеличение его объема. Наиболее опасны в этом отношении растворы на углеводородной ос-нове, в которые может проникать большое количество плас-тового газа. Обнаружить вовлеченный таким способом в бу-ровой раствор природный газ очень трудно.

Растворы, газированные сероводородом, создают особен-ные трудности при дегазации:

система дегазации должна быть весьма эффективной, так как при объемной концентрации 0,1 % сероводород -- опас-ный яд;

· сероводород взрывоопасен даже при объемной концент-рации 4,3 % (для сравнения, нижний предел взрываемости метана 5 %);

· сероводород растворим в буровых растворах, его раство-римость в воде приблизительно пропорциональна давлению;

· сероводород обладает высокой корродирующей способно-стью.

Различная степень газирования бурового раствора требует применения разного оборудования для дегазации. Свободный газ удаляется достаточно просто. Поток раствора из межтрубного пространства поступает в сепаратор, где газ отделя-ется от раствора и направляется по отводной линии на факел. Оставшийся в растворе свободный газ удаляется в атмо-сферу окончательно на виброситах или в емкости для сбора очищенного от шлама раствора.

Газ, проникший в молекулярную структуру раствора,извлечь значительно труднее. Для этого требуется не только затратить некоторую энергию, но и часто необходимо при-менять понизители вязкости и поверхностного натяжения, если используется недостаточно совершенная система дегаза-ции.

Жидкие и растворимые газы удалить из раствора доволь-но трудно, так как газ входит в межмолекулярную структуру нефтяной фазы бурового раствора. Легкие углеводороды

(С1 - С5) можно извлечь с помощью вакуумного дегазатора, а тяжелые почти невозможно Выходя из раствора в виде пара, эти газы причиняют много неприятностей.

Если поступающий в раствор газ содержит двуокись угле-рода или сероводород, то обычно повышают рН раствора, чтобы избежать образования слабых кислот. Применяют также раскислитель сероводорода как средство против от-равления людей этим сильнотоксичным газом. В качестве раскислителя чаще всего используют каустическую соду, мо-дифицированные неорганические соединения железа, соеди-нения карбоната меди, карбоната цинка и оксида цинка.

Страницы: 1, 2, 3, 4, 5


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.