скачать рефераты

МЕНЮ


Диагностическое обследование и ремонт нефтепровода

магистральных нефтепроводах экспортного направления;

магистральных нефтепроводах, задействованных в перспективных проектах развития системы;

магистральных нефтепроводах или участках, не имеющих дублирующего направления;

магистральных нефтепроводах регионального значения от мест добычи и загруженных свыше 70% от проектной производительности.

2.8 Методы ремонта дефектных участков нефтепровода

Запрещается установка на нефтепроводах заплат всех видов, накладных элементов ("корыта") и других, нерегламентированных настоящим РД конструктивных элементов. Все ранее установленные на нефтепроводах заплаты и накладные элементы должны быть заменены постоянными методами.

Разрешенные методы ремонта.

Для ремонта дефектов магистральных и технологических нефтепроводов могут применяться следующие методы ремонта:

шлифовка;

заварка;

вырезка дефекта (замена катушки или замена участка);

установка ремонтной конструкции (муфты, патрубки).

Методы ремонта нефтепроводов подразделяются на методы постоянного ремонта и методы временного ремонта.

К методам постоянного ремонта относятся методы, восстанавливающие несущую способность дефектного участка нефтепровода до уровня бездефектного участка на все время его дальнейшей эксплуатации.

К методам и конструкциям для постоянного ремонта относятся шлифовка, заварка, вырезка, композитная муфта, обжимная приварная муфта, галтельная муфта, удлиненная галтельная муфта для ремонта гофр, патрубок с эллиптическим днищем.

Конструкции временного ремонта применяются на ограниченный период времени, установка их в плановом порядке запрещается. К конструкциям для временного ремонта относятся необжимная приварная муфта и муфта с коническими переходами. Муфты этих типов разрешается применять для аварийного ремонта с последующей заменой в течение одного календарного месяца и для ремонта гофр на срок не более одного года с обязательной последующей заменой на постоянные методы ремонта.

Допустимый срок эксплуатации ранее установленных муфт с коническими переходами, необжимных приварных муфт и заплат определяется в зависимости от отношения максимального рабочего давления в зоне дефекта к проектному давлению нефтепровода.

Ремонтные конструкции должны быть изготовлены в заводских условиях, в условиях Центральных баз производственного обеспечения или ремонтных участков ОАО МН по техническим условиям и конструкторской документации, разработанной, согласованной и утвержденной в установленном порядке и иметь паспорт.

Применение муфт и других ремонтных конструкций, изготовленных в полевых условиях (в трассовых условиях) запрещается.

2.9 Краткая характеристика подводного перехода

Река Калмаш находится на территории Чекмагушевского района Башкортостана. Участок подводного перехода нефтепровода Калтасы - Уфа-2 через реку Калмаш расположен у деревни Калмаш, по трассе трубопровода - это 107,8 км. Ремонт подводного перехода делается на основании диагностического обследования. На этом участке трубопровода обнаружено многочисленное количество дефектов подлежащих ремонту и один дефект подлежащий первоочередному ремонту.

Длина подводного перехода, м 134;

ширина русла, м 27,5;

максимальная глубина реки, м 1,5;

максимальная глубина разрабатываемой траншеи: 2,5;

характеристика трубы: 72010 мм; сталь 17Г1С;

рабочее давление, МПа 6,4;

русло реки сложено гравийно-галечным материалом с песком

Течение реки - 0,9 м/с, справа налево если смотреть по трассе.

Изоляционное покрытие «Пластобит - 40», усиленное: грунтовка, мастика, «Изобит» и обертка ПЭКОМ.

Футеровка: сплошная, деревянными рейками сечением 40006030 по ТУ 102-14-86.

Балластировка: чугунными грузами, марка СЧ-15 ГОСТ 1412-85.

Участок перехода представляет собой относительно равную с абсолютными отметками от 106,23 до 05,65 м. На участке перехода русло извилистое, с пологими берегами. Берега проросли кустарником, полоса зарослей от 5 до 5 м. Река Калмаш не судоходная. Амплитуда колебаний воздуха составляет от 57 до 62 0С. [14]

3 РАСЧЕТНЫЙ РАЗДЕЛ

3.1 Расчет толщины стенки трубопровода

В общем случае толщину стенки трубопровода согласно СНиП 2.05.06-85* можно определить следующим образом

,

где 1 - коэффициент двухосного напряженного состояния металла труб;

nр - коэффициент надежности по нагрузке от внутреннего давления, nр=1,1 [1];

р - внутреннее давление в трубопроводе;

Dн - наружный диаметр трубопровода;

R1 - расчетное сопротивление материала и его можно рассчитать по формуле

,

где нормативное сопротивление материала, зависящее от марки стали, =в=520МПа;

m - коэффициент условий работы трубопровода, для первой категории трубопроводов m=0,75 [1];

к1 - коэффициент надежности по металлу, для данной марки стали к1=1,47 [1];

кн - коэффициент надежности по назначению, для трубопровода с условным диаметром 720 мм и внутренним давлением 6,4 МПа кн=1 [1];

МПа;

Коэффициент 1=1 при сжимающих продольных осевых напряжениях пр N>0.

При пр N<0 1 определяется по формуле

.

Первоначально принимаем 1=1.

Рассчитаем предварительную толщину стенки

Уточняем это значение по ГОСТ и принимаем д=10 мм [31].

Продольные осевые напряжения рассчитаем по формуле

,

где t - расчетный перепад температур;

- коэффициент Пуассона, =0,3 [1];

t - коэффициент линейного расширения металла,

t=1,210-5 1/0С [1];

Е - модуль Юнга, Е=2,06105 МПа [1];

nt - коэффициент надежности по температуре, nt=1 [1];

Dвн - внутренний диаметр трубопровода.

мм;

Расчетный перепад температур t

0 С,

0 С.

Рассчитаем продольные напряжения пр N

Так как для пр N(-)>0 1=1 и данный случай уже рассчитан, то рассчитаем значение коэффициента двуосного напряженного состояния для пр N(+)<0

Для данного значения коэффициента 1 рассчитаем толщину стенки

Окончательно принимаем трубу 720?10.

3.2 Проверка толщины стенки на прочность и деформацию

Прочность в продольном направлении проверяется по условию

R,

где - коэффициент, учитывающий двухосное напряженное состояние металла труб, при растягивающих осевых продольных напряжениях (0) =1,0 , при сжимающих (<0) определяется по формуле

=,

где -кольцевые напряжения в стене трубы от расчетного внутреннего давления,

=,

=,

=.

=246,4<, что удовлетворяет условию;

=-5,7<, условие выполняется.

Для предотвращения недопустимых пластических деформаций трубопроводов проверку производят по условиям

,

,

где -максимальные продольные напряжения в трубопроводе от нормативных нагрузок и воздействий;

-коэффициент, учитывающий двухосное напряженное состояние металла трубы;

-кольцевые напряжения в стенках трубопровода от нормативного внутреннего давления;

нормативное сопротивление материала, зависящее от марки стали, =т=360МПа;

=t,

где -упругого изгиба оси трубопровода

Для проверки по деформациям находим:

1)кольцевые напряжения от действия нормативной нагрузки - внутреннего давления

;

МПа.

Коэффициент определяется по формуле

,

.

Условие выполняется 224;

2)продольные напряжения

при <0, =0,389,

>0, ,

для положительного температурного перепада

а)=,

б)=,

условие , выполняется в двух случаях

МПа,

МПа,

для отрицательного температурного перепада

а)=

б)=

условие , выполняется в двух случаях

;

3.3 Расчет устойчивости трубопровода на водном переходе

Уравнение устойчивости подводного трубопровода согласно СНиП 2.05.06-85* имеет следующий вид

,

где nб - коэффициент надежности по нагрузке, nб=1 для чугунных пригрузов [1];

кн.в - коэффициент надежности против всплытия, кн.в=1,1 для русловых участков переходов при ширине реки до 200 м [1];

qизг - расчетная нагрузка, обеспечивающая упругий изгиб трубопровода соответственно рельефу дна траншеи.

qв - расчетная выталкивающая сила воды, действующая на трубопровод;

qверт - величина пригруза, необходимая для компенсации вертикальной составляющей Ру воздействия гидродинамического потока на единицу длины трубопровода, qверт=Ру;

qг - величина пригруза, необходимая для компенсации горизонтальной Рх составляющей воздействия гидродинамического потока на единицу длины трубопровода, qг=Рх /к;

к - коэффициент трения трубы о грунт при поперечных перемещениях, к=0,45 [2];

qдоп - нагрузка от веса перекачиваемого продукта, qдоп=0 т.к. рассчитывается крайний случай - трубопровод без продукта;

qтр - расчетная нагрузка от собственного веса трубопровода;

сбит=1040 кг/м3плотность изобита, [2].

Расчетная выталкивающая сила воды, действующая на трубопровод

,

где Dн.ф. - наружный диаметр футерованного трубопровода;

в =1100 Н/м,[2] - плотность воды.

где ип - толщина изоляционного покрытия,

гр - толщина покрытия грунтовки,

мас - толщина покрытия мастики,

об - толщина обертки.

Н/м.

Горизонтальная составляющая гидродинамического воздействия потока

,

Сх-гидродинамический коэффициент лобового сопротивления, зависящий от числа Рейнольдса и характера внешней поверхности трубопровода.

где Vср - средняя скорость течения реки, Vср=0,9 м/с;

нв - кинематическая вязкость воды, м2/с.

Для офутерованного трубопровода и 105<Re<107 коэффициент Сх=1,0 [2].

Н/м.

Вертикальная составляющая гидродинамического воздействия потока

,

Су - коэффициент подъемной силы, Су=0,55 [10];

Н/м.

Расчетную нагрузку от собственного веса трубопровода рассчитаем по следующей формуле

qтр=nсв(qмн + qизн+qфутн),

где nсв - коэффициент надежности по нагрузкам от действия собственного веса, nсв=0,95 [1];

qмн - нормативная нагрузка от собственного веса металла трубы;

qизн -нормативная нагрузка от собственного веса изоляции;

qфутн - нормативная нагрузка от собственного веса футеровки.

Нормативная нагрузка от собственного веса металла трубы

,

м - удельный вес металла, из которого изготовлены трубы (для стали м=78500 Н/м3 [2]);

Н/м.

Нормативная нагрузка от собственного веса битумной изоляции

,

где бит- плотность битумной изоляции (изобита);

Dн.и. - наружный диаметр изолированного трубопровода

Н/м.

Нормативная нагрузка от собственного веса обертки

q=к··D···g

где к=1,09- коэффициент для двухслойной изоляции;

=0,6·10 м - толщина обертки;

=880 кг/м - плотность обертки.

q=1,09·3,14·0,728·0,6·10·880·9,81=12,91 Н/м.

Нормативная нагрузка от собственного веса изоляции

q=q+q=92,77+12,9=105,68 Н/м.

Нормативная нагрузка от собственного веса футеровки

,

где сфут - плотность деревянной футеровки;

Dн.ф. -наружный диаметр офутерованного трубопровода.

Н/м.

Расчетная нагрузка от собственного веса трубопровода

qтр=0,95(1750,1+105,68+455,91)=2196,11 Н/м.

Дополнительная выталкивающая сила за счет изгиба трубопровода

где

J- осевой момент инерции поперечного сечения трубы

,

,

Величина пригрузки трубопровода в воде

Н/м.

Определим расстояние между пригрузами и их число.

Для балластировки трубопровода выбираем чугунные кольцевые марка СЧ1520 ГОСТ 1412-85 массой 1100 кг, объемом 0,175 м3 , толщина груза =0,065м, ширина груза 0,96 м, наружный диаметр Dн =0,96 м [2].

Расстояние между пригрузами

где Qг - масса груза;

Vг - объем груза;

Число пригрузов

Nг=L/lг=134/1,78=75,28.

Принимаем количество пригрузов Nг=76 шт.

4 ДИАГНОСТИЧЕСКОЕ ОБСЛЕДОВАНИЕ И РЕМОНТ НЕФТЕПРОВОДА «КАЛТАСЫ-УФА-2» НА ПОДВОДНОМ ПЕРЕХОДЕ Р.КАЛМАШ

4.1 Водолазное обследование

Перед началом производства земляных работ выполняется водолазное обследование дна реки Калмаш с целью выявления препятствий, мешаюших производству работ и проверке совпадения черных отметок с проектными После вскрытия нитки трубопровода до его демонтажа (протаскиванием), также производится водолазное обследование.

После окончания доработки траншеи до проектных отметок, до укладки новой нитки трубопровода производится водолазное обследование подводной траншеи по дну, глубины траншеи и величины откосов по проекту.

После окончания укладки выполняется водолазное обследование уложенного трубопровода с целью проверки его положения на дне траншеи.

После засыпки подводной траншеи выполняется водолазное обследование с целью соответствия фактических отметок засыпки проектным.

Обследование дна подводного перехода по ходовому тросу:

Перед обследованием необходимо выполнить следующие дополнительные мероприятия:

-установить на обоих берегах створные знаки обозначающие границы обследуемой полосы в пределах ширины раскрытия траншеи плюс пять метров выше и ниже по течению;

-проложить направляющие тросы по границам обследуемой полосы;

-уложить ходовой трос, имеющий на концах балласт с буйками, в начале обследуемой полосы.

Двигаясь от одного конца к другому концу ходового троса водолаз выполняет обследование дна. Дойдя до конца ходового троса , водолаз переносит его вместе с балластом и буком по направляющему тросу на расстояние двойной видимости под водой. Другой конец переносится на такое же расстояние рабочими на лодке. После этого двигаясь по ходовому тросу в обратном направлении, водолаз продолжает обследование. Длина ходового троса принимается чуть больше ширины обследуемой полосы.

Обследование трубопровода уложенного в траншею:

Водолаз передвигается по дну подводной траншеи вдоль уложенного трубопровода, при этом проверяет состояние трубопровода после выполнения укладки (протаскиванием). Проверяется целостность футеровки и изоляции, возможное смещение грузов, совпадение положения трубопровода в траншеи с проектным положением. Периодически водолаз отходит от трубопровода к бровке траншеи, при этом проверяется фактическое положение уложенного трубопровода. Обо всех отклонениях от проектного положения трубопровода (наличие провисов, отклонение от оси траншеи) водолаз докладывает на поверхность и отмечает эти места буйками. После выбора всей длины водолазного шланга водолаз буком место следующего погружения, переходит на другую сторону трубопровода и обследует данный участок в обратном направлении.

4.2 Земляные работы

Земляные работы необходимо производить поэтапно:

I этап - вскрытие существующего трубопровода;

II этап - доработка траншеи после извлечения трубопровода до отметок предусмотренным проектом.

Вскрытие трубопровода в русле производится с помощью гидромонитора, при этом сначала грунт снимается над трубой, за тем последовательными проходами гидромонитора вдоль трубы разрабатывается грунт до нижней образующей трубы. Одновременно со вскрытием трубопровода в русле производится разработка урезной части траншеи. На пойме грунт разрабатывается экскаватором до проектных отметок. После демонтажа существующего трубопровода, в русле и урезах траншея дорабатывается гидромонитором до проектных отметок, а так же возможна с помощью экскаватора установленного на понтоне.

На пойме после демонтажа производят подчистку траншеи.

Грунт от разработки траншеи гидромонитором (или экскаватором) транспортируется в подводные отвалы за пределы раскрытия траншеи.

Ширина русловой траншеи по дну принята 3.0 м согласно ВСН-010-88, на пойме ширина траншеи принята из условия геометрических размеров ковша.

Засыпка подводной траншеи предусматривается гидромонитором, ранее разработанным грунтом из подводного отвала, до черных отметок. Объём засыпки принят с учетом потерь грунта на отмачивание. Засыпка урезов производится сначала гидромонитором затем бульдозеро до черных отметок. На пойме трубопровод засыпается бульдозером до черных отметок.

Технология работ.

До производства земляных работ необходимо:

- принять в установленном порядке створ перехода;

- произвести вынос реперов из зоны производства работ, установить водомерный пост;

- получить разрешение на производство работ;

- произвести вырубку леса и расчистку строительной полосы от кустарника;

- выполнить срезку плодородного слоя с учетом последующей рекультивацией;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.