скачать рефераты

МЕНЮ


Математические модели и методы обоснования управленческих решений и сферы их применения в практике управления

p> В загальновідомому підручнику “Основи менеджменту” автори дають наступну класифікацію моделей прийняття управлінських рішень: o Фізична модель; o Аналогова модель; o Математична модель.

По Мескону фізична модель представляє те, що досліджується, за допомогою збільшеного чи зменшеного описання об’єкту або системи.
Автомільні та авіаційні підприємства завжди виготовляють фізичні зменшені копії нових засобів пересування. Будучи точною копією, модель повинна поводити себе аналогічно автомобілю чи літаку, що виготовляється, але при цьому коштує вона значно менше. Таким самим чином будівельна компанія завжди будує мініатюрну, перед тим як розпочати будівництво виробничого чи адміністративного корпусу або складу.

Аналогова модель представляє об’єкт, що досліджується аналогом, який поводить себе як реальний об’єкт, але не виглядає як такий. Приклад аналогової моделі – організаційна схема. Вибудовуючи її, керівництво в стані легко уявити собі ланцюги проходження команд і формальну залежність між індивідами та діяльністю. Така аналогова модель звичайно більш простий і ефективний спосіб сприйняття і прояву складних взаємозв’язків структури великої організації, ніж, припустимо, складання переліку взаємозв’язків всіх робітників. Інший приклад аналогової моделі – графік, що показує залежність, між кількістю виробленої фарби та витратами з розрахунку на 1 галон) (див. рис. 3).

2,70

2,60

2,50

2,40

2,30

2,20

2,10

2,00

1000 2000 3000 4000 5000
6000 7000

Рис.3 – Аналогова модель.

[5, c.225].

Даний графік, що ілюструє саме аналогову модель, показує яким чином рівень виробництва на підприємстві впливає на витрати.

Іншими за класифікацією йдуть математичні моделі. Але оскільки це безпосередньо пов’язано з темою даної роботи, то про математичні моделі більш детально буде викладено у відповідному розділі курсової роботи.

2. Математичні моделі і методи прийняття рішень.

Епоха застосування математичних моделей прийняття управлінських рішень розпочалася після 2-ї світової війни. Поява та розповсюдження ЕОМ зробило можливим використання математичних моделей для рішення економічних задач, починаючи від перевезення одного продукту в масштабах району і закінчуючи моделюванням національної економіки. Починають розроблятися моделі міст, ринків , війн, так звані глобальні моделі розвитку всесвіту. Якщо модель побудована і її створювачі вірять в її адекватність, то вона використовується для вирішення різних задач – прогнозування, прийняття простих і складних рішень. Як правило, застосування математичних моделей пов’язане з використанням ОЕМ. Математичні моделі в теперішній час претендують на роль універсального засобу вирішення будь-яких проблем.

В математичній моделі, яку інколи називають символічною, викоритовуються символи для описання властивостей або характеристик об’єкту чи події. Приклад математичної моделі і її аналітичної сили як засобу, що допомагає нам зрозуміти виключно складні проблеми, - відома формула
Ейнштейна E=mc2 . Якби Ейнштейн не зміг побудувати цю математичну модель, в якій символи замінюють реальність, малоймовірно, щоб у фізиків з’явилася навіть віддалена ідея про взаємозв’язок матерії та енергії. Математичні моделі відносяться до типу моделей, що найчастіше використовуються при прийнятті організаційних рішень [5, с.226].

Для кращого розуміння сутності економічних моделей, я зроблю деталізований огляд основних серед них з наведенням конкретних прикладів та малюнків.

Як вже зазначалось вище, модель задачі прийняття рішень зводиться до знаходження оптимуму. Серед оптимізаційних задач дуже відомими є задачі лінійного програмування. Задачами лінійного програмування являються такі оптимізаційні задачі, в котрих цільова функція і функціональні обмеження – лінійні функції, що приймають будь-які значення з деякої множини значень.
Стандартна задача лінійного програмування записується у вигляді:

[pic][pic] (I)

В задачі лінійного програмування нестрогі функціональні нерівності можна перетворити в строгі рівності, прибавивши невідомі невід’ємні додаткові змінні. Звичайно, число невідомих і число рівнянь в системі може бути різним. Але й в цьому випадку для системи рівнянь відомі можливі варіанти: система може бути несумісною, тобто не мати рішень взагалі; рішення може бути одне, але (!) це єдине рішення може виявитися неприпустимим з-за наявності від’ємних компонент в рішенні; рішень може бути нескінченно багато. Взагалі для єдиності рішення задачі лінійного програмування не вимагається рівності числа змінних та числа обмежень. Для задач лінійного програмування розроблені багаточисельні ефективні методи вирішення і відповідне математичне забезпечення для різноманітних ситуацій
[8, с.22]. o Приклад.

Невелика сімейна фірма виробляє два широкопопулярних безалкогольних напої – “Pink Fuzz” та “Mint Pop”. Фірма може продати всю продукцію, котра буде вироблена, однак обсяг виробництва обмежений кількістю основного інгридієнту та виробничою потужністю обладнання. Для виробництва 1 л “Pink Fizz” потрібно 0,02 години роботи обладнання, а для виробництва 1 л “Mint Pop” – 0,04 години. Витрати спеціального інгридієнту складають 0,01 і 0,04 кг на 1 л “Pink Fizz” і “Mint Pop” відповідно. Щоденно в розпорядженні фірми мається 24 години часу роботи обладнання та 16 кг спеціального інгридієнту. Доход фірми складає 0,10 у.о. за 1 л “Pink Fizz” і 0,30 у.о. за 1 л “Mint Pop”. Скільки продукції кожного виду слід виробляти щоденно, якщо мета фірми – максимізація щоденного доходу?

Рішення.

Крок 1. Визначення змінних. В рамках заданих обмежень фірма повинна прийняти рішення про те, яку кількість кожного виду напоїв слід випускати. Нехай р – число літрів “Pink Fizz”, що виробляється за день.

Нехай m – число літрів “Mint Pop”, що виробляється за день.

Крок 2. Визначення цілі та обмежень. Ціль полянає в максимізації щоденного доходу. Нехай Р – щоденний доход, у.о. Він максимізується в рамках обмежень на кількість годин роботи обдаднанняі наявності спеціального інгридієнту.

Крок 3. Виразимо ціль через змінні:

Р = 0,10 р + 0,30 m (у.о. в день).

Це є цільова функція задачі – кількісне співвідношення, що підлягає оптимізації.

Крок 4. Виразимо обмеження через змінні. Існують такі обмеження на виробничий процес:

А) Час роботи обладнання. Виробництво р літрів “Pink Fizz” і m літрів

“Mint Pop” потребує (0,02 р + 0,04 m) годин щоденно. Максимальний час роботи обладнання складає 24 год в день. Таким чином:

0,01 р + 0,04 m [pic] 24 год/день

Б) Спеціальний інгридієнт. Виробництво р літрів “Pink Fizz” і m літрів

“Mint Pop” потребує (0,01 р + 0,04 m) [pic] 16 кг/день.

Інших обмежень не має, але розумно передбачити, що фірма не може виробляти напої у від’ємних кількостях , тому: р[pic]0, m[pic]0.

Кінцеве формулювання задачі лінійного програмування має наступний вигляд. Максимізувати:

Р = 0,10 р + 0,30 m (у.о. в день). при обмеженнях: час роботи обладнання: 0,01 р + 0,04 m [pic] 24 год/день спеціальний інгридієнт: 0,01 р + 0,04 m [pic] 16 кг/день. р, m[pic]0. (3, с.402).

Різновидом задач лінійного програмування є транспортні задачі. Нехай потрібно перевезти деяку кількість одиниць однорідного товару з різних складів в декілька магазинів. Приймемо слідуючі позначення: k – число складів, n – число магазинів, аі – кількість товару на і-ому складі, bj - кількість товару, необхідного j-ому магазину, xij - кількість одиниць товару, що перевозиться з і-го складу в j-ий магазин. Передбачається, що a1
+ … + ak = b1 + …bn і що відомі вартості cij перевезення одиниці товару з і-го складу до j-го магазину (вважається, що загальна вартість перевезення пропорційна загальному обсягу перевезення cijxij при перевезенні з і-го складу до j-го магазину). Потрібно знайти такі обсяги перевезень, щоб F(x)
= (c11x11 + … + c1nx1n) + (ci1xi1 + … + cinxin) +
+ (ck1xk1 + … + cknxkn) -> min при обмеженнях:

[pic] (II).
Для нас важливим є те, що всі невідомі змінні входять до цільової функції, а також в обмеження в першому ступені і являються неперервно знінюваними величинами. Рівності n=k не вимагається.

Для розв’язку задач лінійного програмування використовується декілька методів, серед яких найбільш розповсюдженими є симплекс-метод (складається симплекс-таблиця, в якій за допомогою числа ітерацій методом Гауса-Жордана знаходиться оптимальне значення цільової функції) та графічний метод.

На практиці в сферах фінансів, маркетингу, інвестування та інших дуже часто виникає проблема раціонального розподілу якихось ресурсів
(капіталовкладень, товару тощо). Щоб прийняти вірне рішення щодо оптимального розподілу ресурсів застосовується математична модель динамічного програмування. Динамічне програмування використовується для дослідження багатоетапних процесів. Стан системи, якою керують, характеризується певним набором параметрів (фазовими координатами). Процес переміщення в фазовому просторі розподіляють на ряд послідовних етапів і здійснюють послідовну оптимізацію кожного з них, починаючи з останнього. На кожному етапі знаходять умовно оптимальне управління при всеможливих передбаченнях про результати попереднього кроку. Коли процес доходить до вихідного стану, знову проходять всі етапи, але вже з множини умовних оптимальних управлінь обирається одне найкраще [8, с.32]. В простому випадку задача динамічного програмування може вирішуватися наступним методом.

Нехай є n функцій з невід’ємними значеннями f1(x1), x1[pic] d1,..., fn(xn), xn[pic] dn, де d1,…,dn – області визначення змінних. Потрібно знайти максимум (або мінімум) F(x1,…,xn)=f1(x1) + … + fn(xn) при деяких обмеженнях на змінні x1,…,xn. В найпростішому випадку обмеження одне ( не враховуючи природньої вимоги невід’ємності змінних): x1+x2+…+xn=A. Схема дій буде наступною: знаходимо F12(A)=max[f1(x)+f2(A-x)], далі
F123(A)=max[F12(x)+f3(A-x)] і т.ін., а в кінці кінців – max
F(x1,…,xn)=F12…n(A)=max[F12…n-1(x)+fn(A-x)]. o Приклад.

Нехай фірма має три торговельні точки, якусь кількість умовних одиниць капіталу і знає для кожної точки залежність прибутку в ній від обсягу вкладення певного капіталу в цю точку.

(Див. таблицю 1).

Таблиця 1:

Вихідні дані прикладу.
|Вкладення | 1 | 2 | 3 |
|0 |0 |0 |0 |
|1 |0,28 |0,25 |0,15 |
|2 |0,45 |0,41 |0,25 |
|3 |0,65 |0,55 |0,40 |
|4 |0,78 |0,65 |0,50 |
|5 |0,90 |0,75 |0,62 |
|6 |1,02 |0,80 |0,73 |
|7 |1,13 |0,85 |0,82 |
|8 |1,23 |0,88 |0,90 |
|9 |1,32 |0,90 |0,96 |
| | | | |

Як розпорядитися наявним капіталом так, щоб прибуток був максимальним ?

Звичайно, можна переглянути всі можливі комбінації розподілу капіталу, скажімо при чотирьох одиницях капіталу:
(4,0,0), (0,4,0), (0,0,4); (3,1,0), (3,0,1); (2,2,0), (2,0,2), (2,1,1) і т.ін.
Але якщо задана велика кількість змінних?... Для вирішення цієї задачі можна використовувати динамічне програмування. Введемо наступні позначення:

F1(x), f2(x), f3(x) – функції прибутку в залежності від капіталовкладень, тобто стовпці 2-4 (див. таб.1), F12(A) – оптимальний розподіл, коли А одиниць капіталу вкладується в першу і лругу точки разом,
F123(A) – оптимальний розподіл капіталу величини А, що вкладається у всі точки разом.

Наприклад,для визначення F12(2) треба знайти f1(0)+f2(2)=0,41, f1(1)+f2(1)=0,53, f1(2)+f2(0)=0,45 і обрати з них максимальну, тобто
F12(2)=0,53. Взагалі F12(2)=max[f1(x)+f2(A-x)]. Обчислюємо F12(0), F12(1),
F12(2),…F12(9), котрі заносимо в таблицю 2 (див. таб.2).

Для А=4 можливі комбінації (4, 0), (3, 1), (2, 2), (1, 3), (0, 4), котрі дають відповідно загальний прибуток: 0,78; 0,90; 0,86; 0,83; 0,65.
Більш детально отримання цих величин показано нижче.

Таблиця 2:

Розподіл капіталу між двома торговими точками.
|Вкладення |f1(x) |f2(x) |F12(A)|Оптимальний |
|(А) | | | |розподіл |
|0 |0 |0 |0 |0,0 |
|1 |0,28 |0,25 |0,28 |1,0 |
|2 |0,45 |0,41 |0,53 |1,1 |
|3 |0,65 |0,55 |0,70 |2,1 |
|4 |0,78 |0,65 |0,90 |3,1 |
|5 |0,90 |0,75 |1,06 |3,2 |
|6 |1,02 |0,80 |1,20 |3,3 |
|7 |1,13 |0,85 |1,33 |4,3 |
|8 |1,23 |0,88 |1,45 |5,3 |
|9 |1,32 |0,90 |1,57 |6,3 |
| | | | | |


F12(A)=max{f1(x)+f2(A-x)}


[pic]

[pic]
Тепер, коли фактично є залежність F12 від величини капіталу, що вкладується у перші дві точки, можна шукати F123(A)=max[F12(x)+f3(A-x)].
Результати наведемо в таблиці 3. Більш детально отримання цих величин при вкладенні капіталу в три точки показано в таблиці 4 для дев’яти одиниць капіталу.
Таблиця 3:
Розподіл капіталу поміж трьома торговими точками.
|Вкладення (А)|F12(x) |f3(x) |F123(A) |Оптимальний |
| | | | |розподіл |
| | | | | |
|0 |0 |0 |0 |(0, 0, 0) |
|1 |0,28 |0,15 |0,28 |(1, 0, 0) |
|2 |0,53 |0,25 |0,53 |(1, 1, 0) |
|3 |0,70 |0,40 |0,70 |(2, 1, 0) |
|4 |0,90 |0,50 |0,90 |(3, 1, 0) |
|5 |1,06 |0,62 |1,06 |(3, 2, 0) |
|6 |1,20 |0,73 |1,21 |(3, 2, 1) |
|7 |1,33 |0,82 |1,35 |(3, 3, 1) |
|8 |1,45 |0,90 |1,48 |(4, 3, 1) |
|9 |1,57 |0,96 |1,60 |(5, 3, 1) або (3,|
| | | | |3, 3) |


Таблиця 4:
Розподіл дев’яти одиниць капіталу поміж трьома точками.
|Капітал |x1+x2 |x3 |F123 |
| | | | |
| 9 |9 |0 |1,57 |
| |8 |1 |1,45+0,15=1,6 |
| |7 |2 |(5, 3, 1) |
| |6 |3 |1,33+0,25=1,58 |
| |5 |4 |1,2+0,4=1,6 |
| |4 |5 |(3, 3, 3) |
| |3 |6 |1,06+0,5=1,56 |
| |2 |7 |0,9=0,62=1,52 |
| |1 |8 |0,70+0,73=1,43 |
| |0 |9 |0,53+0,82=1,35 |
| | | |0,28+0,90=1,18 |
| | | |0,96 |

Важливо те, що отримані результати були д тими ж, якби ми користувались не F12 і F123, а, скажімо, F31 i F312. Зверніть увагу на те, що оптимальне рішення для А=9 – не єдине!

Динамічне програмування потужний та важливий метод вирішення певного класу оптимізаційних задач, оскільни він дозволяє різко скоротити обсяг переборів варіантів і обсяг обчислень [8, с.35].

Для того, щоб надати для розгляду якомога більше математичних моделей
(звичайно не всі, інакше потрібно було б писати книгу), надалі я слідуватиму прикладу американських класиків Мескона М., Альберта М. та
Хедоурі Ф. і буду приділяти більше уваги короткому описанню тієї чи іншої моделі, ніж вдаватися у математичні подробиці.

Приведемо приклад наступної математичної моделі – моделі управління запасами. Модель управління запасами використовується для визначення часу розміщення замовлень на ресурси та їх кількості, а також маси готової продукції. Будь-яка організація повинна підтримувати деякий рівень запасів для запобігання затримок на виробництві і в збуті [5, с. 231]. Ціль даної моделі – зведення до мінімуму негативних наслідків накопичення запасів, що виражається в певних витратах. Всупереч відомій приказці (“Запас кишеню не тягне”), підприємцю потрібно піклуватися про те, щоб витрати на зберігання продукції були в розумних межах.

Існують різні види запасів. Буферний запас, що створюється між постачальником та виробником, потрібен для компенсації затримок в поставках, для послаблення залежності споживача від постачальника, для виробництва продукції партіями оптимального розміру. Запас готової продукції потрібен для виробництва продукції партіями оптимального розміру, для задоволення очікуваного попиту, для компенсації відхилення фактичного попиту, від того, що прогнозується (гарантійний запас). Можливі різні постановки задачі управління запасами. Наприклад: визначити обсяг замовлень, вважаючи моменти виробництва замовлень фіксованими, або визначити і обсяг замовлень і моменти замовлень. Під оптимальним як правило розуміється рішення, що мінімізує суму всіх затрат, пов’язаних із створенням запасів. Затрати бувають трьох типів: затрати на оформлення і отримання замовлення, вартість зберігання продукції і штрафи при виснаженні запасів за недопоставлену продукцію. Приходиться також враховувати характеристики попиту (відомий – невідомий, постійний – залежить від часу, виникає в певні моменти – існує весь час) і замовлень (виконуються одразу ж
– через деякий час, приймаються в будь-який час – в певні моменти, замовлене надходить рівномірно – нерівномірно і т.ін.)[8, с.44].

Досить часто менеджеру доводиться вирішувати проблеми, які носять масовий характер. Наприклад це може стосуватися обслуговування клієнтури, яка надходить чергою або врахування затрат часу при простої на митниці і т.ін. Деколи доводиться розробити автоматизоване устаткування, до якого в порядку черги будуть надходити об’єкти для обслуговування. Мескон М. наводить приклади масового характеру при прийомі дзінків в авіакомпанію для резервування квитків та інші. Всі ці проблеми можуть вирішуватися по- різному, але якщо брати до уваги теоретичний підхід з наукової точки зору, то в даному випадку для вирішення цих питань застосовують моделі теорії черг або оптимального обслуговування. “Принципова проблема полягає в урівноваженні затрат на додаткові канали обслуговування та втрат від обслуговування на рівні нижчому за оптимальний” – стверджує Мескон. Моделі черг надають керівництву інструментарій для визначення оптимальної кількості каналів обслуговування, котрі необхідно мати, щоб збалансувати витрати у випадках надто малої і надто великої їх кількості.

Серед інших моделей, які не обійшла “королева наук” – математика, величезне практичне значення має теорія ігор. Про сферу застосування даної моделі (як і про інші моделі) буде сказано в наступному розділі. Отже слід розкрити, що таке гра і які загальні принципи її проведення. На змістовному рівні під грою можна розуміти взаємодію декількох осіб (гравців), які мають кінцевий стан (виграш), якого добивається кожен гравець, але не кожен може добитися. Прикладом гри може слугувати боротьба декількох фірм за державне замовлення. В залежності від кількості гравців в грі може існувати якась скінченна кількість ходів кожного гравця. Послідовність ходів гравців, яка називається партією, призводить гру до кінцевого стану. Якщо гра складається лише з двох гравців, то схему такої гри подають у вигляді таблиці – платіжної матриці (назва говорить сама за себе – платіж, що сплачується 1-им гравцем 2-му, якщо 2-й виграє). Нерідкі випадки, коли по завершенню гри жоден з гравців не отримує ані виграшу, ані програє. Такий випадок носить назву гри двох осіб з нульовою сумою. Важливим поняттям теорії ігор є поняття стратегії – встановлений гравцем метод вибору ходів протягом гри.

Розглянемо приклад вирішення задачі теорії ігор.
( Приклад. “Я думаю про те, якби змінити розташування мого автомобільного салону по причині близького розташування конкурента. Якщо я зміню розташування і він теж змінить, то я ризикую втратити пів-мільйона доларів від чистого продажу. Якщо я перерозташуюсь, а він ні, я зароблю на цьому мільйон від чистого продажу. Якщо я залишусь там де є, а він переїде, я зароблю півтора мільйони, але якщо я залишусь і він теж, то я втрачаю мільйон. Якби ж я міг правити світом, я б залишився там де є, а його примусив би переїхати, бо в такому разі мене чекає найбільший прибуток.
Однак я не можу ні примусити його, ні передбачити що там буде. Якщо ж я просто хочу мінімізувати втрати, я зміню своє розташування. Матриця рішень проілюструє мою ділему і можливе вирішення проблеми:

Таблиця 5:


Матриця рішень.

|Дія конкурента |Моя дія |
| |Змінити |Не змінювати |
| |розташування |розташування |
|Змінити |-$500,000 |+$1,500,000 |
|розташування | | |
|Не змінювати |+$1,000,000 |-$1,000,000 |
|розташування | | |


З мого боку, мені потрібна якась очікувана винагорода, яка залишиться сталою незалежно від рішення мого конкуренту. Таким чином, я введу поняття ймовірності (Р) залежної від дій. Якщо мій конкурент вирішить змінити місцерозташування, моя очікуваня винагорода становитиме
-$500,000*Р+$1,500,000*(1-P). Якщо він вирішить залишитись там де він є, моя винагорода дорівнюватиме $1,000,000*P-$1,000,000*(1-P). Оскільки я хочу, щоб винагорода була однаковою в кожному випадку, маємо рівняння:
-$500,000*P + $1,500,000*(1-P) = $1,000,000*P - $1,000,000*(1-P) або
P = .6250 і (1-P) = .3750
Таким чином, якщо мій конкурент переїде, моя очікувана винагорода (виграш) дорівнює -$500,000 x .6250 + $1,500,000 x .3750 = $250,000.
Якщо він залишається, я матиму: $1,000,000 x .6250 - $1,000,000 x .3750 =
$250,000. Незалежно від дій мого конкурента, я отримаю $250,000 – набагато менше, ніж можливий виграш, але набагато більше, ніж можливі втрати”[10, пер. з англ. Н.Д.].

Я перелічив здається не дуже і багато різновидів моделей прийняття рішень. Але дуже багато з них, як свідчать літературні джерела, малопристосовні до практики управління, а більше функціонують в сферах економічного аналізу, політики, маркетингу (такі моделі як моделі торгів, моделі правила більшості, модель розподілу портфельних інвестицій тошо).
Моєю ж метою було і є насамперед розкрити сутність тих моделей, які стосуються прийняття та обгрунтування управлінських рішень і нерідко знаходять практичне застосування в менеджменті.

Перед тим, як перейти до викладення наступного питання, я розгляну ще одну досить популярну математичну модель з теорії та практики прийняття рішень. Якщо пригадати другу схему (див. рис.2), то за вказаною там класифікацією всі вищеперелічені моделі використовувалися при застосуванні кількісних методів обгрунтування управлінських рішень. Як бачимо зі схеми, серед якісних методів існує лише один – експертний метод, який базується на використанні математичних моделей. Передусім слід визначити термін
“експерт”. Експерт – це людина, яку ОПР або аналітична група, що проводить експертизу, вважає професіоналом достатньо високого рівня в деякому питанні, чиї оціннки і судження з приводу об’єкту експертизи враховуються при прийнятті рішень. Під експертизою розуміють проведення групою компетентних спеціалістів виміру деяких характеристик для підготовки прийняття рішення [8, с.134]. Експертиза пов’язана з деяким оцінюванням об’єктів. Оцінки бувають різних видів. Насамперед, це кількісні оцінки
(наприклад ціна товару), далі можна виділити бальні оцінки (їх вже слід віднести до якісних), також дуже розповсюджений вид оцінки – ранжування.
Під ранжуванням розуміють впорядкування об’єктів згідно з убуванням їх переваг. Прикладом ранжування може бути визнначення призерів деякого конкурсу. Інший метод експертного оцінювання – метод попарного порівняння – вказання переважаючого об’єкта в кожній парі об’єктів, що оцінюються.

Для отримання і обробки кількісними методами якісної експертної інформації можуть використовуватись вербально-числові шкали, в склад котрих входять змістовно описувані найменування її градацій і відповідні їм числові значення або діапазони числових значень. Широке розповсюдження отримала вербально-чилова шкала Харрінгтона (див. табл. 6).

Таблиця 6:

Шкала інтенсивності критеріальної властивості.

|Найменування градації |Числові інтервали |
|Дуже висока |1,0-0,8 |
|Висока |0,8-0,63 |
|Середня |0,63-0,37 |
|Низька |0,37-0,2 |
|Дуже низька |0,2-0,0 |

Звичайно, приведене описання експертних оцінок не являється вичерпним.
Вище перелічені лише деякі основні типи оцінок, але також неповний перелік дає достатнє уявлення про різномаїття можливостей оцінювання при проведенні експертизи.

3. Застосування математичних моделей і методів в практиці управління.


Чи легко собі уявити сучасного українського підприємця, що сидить в своєму офісі та креслить на папері симплекс-таблицю? Звичайно, що ні. Але в розвинених західних країнах не лише на фірмах створюються економетричні, аналітичні відділи, але й цілі науково-дослідні інститути працюють над розробками математичних моделей, які потім упішно використовуються в економіці, менеджменті, фінансовій та банківській сферах тощо. Чому ж нашій країні таке низьке місце приділяється даній методології? Справа в тому, що поняття «менеджмент» та «менеджер» для наших підприємців мають зовсім не той відтінок, який їм слід би мати. Після розпаду СРСР все більш менш активне людство почало оволодівати підприємницьким сектором економіки.
З’явилося багато до цього часу невідомих термінів: бартер, біржа, холдінг, дивіденд, менеджер, брокер і ще дуже багато інших. В старій системі освіти цими термінами не оперували, а американська наука менеджмент взагалі була чужою. Як правило в більшості випадків підприємницький сектор окупували ті люди, які дуже віддалені від економічних та управлінських знань. Тому про раціональні технології прийняття управлінських рішень говорити не має сенсу. Це прийде і в нашу країну. Але не через рік і не через два, а з лише з тим поколінням менеджерів, яке оволодіває цими знаннями вже тепер на високому рівні. Не дарма часто чуємо і абсурдні вислови, коли наприклад касир називається менеджером по продажу і т.ін.

Давайте розглянемо застосування вищеперелічених моделей, нехтуючи сучасними умовами. Отже, почнемо спочатку. Ми починали розгляд моделей з моделі лінійного програмування. Різновидом цієї моделі є транспортна задача, яка на мою думку представляє найбільший інтерес в сучасному малому бізнесі. Підприємець, нехтуючи побічними факторами, може легко побудувати дану модель і тим самим збільшити приботок та мінімізувати витрати палива та робочого часу на перевезення. Що стосується динамічного програмування, то вище мною вже розглядався досить життєвий приклад про розподіл капіталовкладень.

Досить складну побудову має модель управління запасами, яка повинна застосовуватися для вирішення проблемних ситуації на підприємствах практично всіх галузей. Наведемо приклад:

Нехай q-обсяг замовлення, q0-оптимальний обсяг замовлення, Si-рівень запасів до початку і-го інтервалу, tS-інтервал часу між двома замовленнями,
S0-оптимальний рівень запасів до початку деякого інтервалу, tS0-оптимальний інтервал часу між замовленнями, T – період часу, для якого шукається оптимальна стратегія, R – повний попит за час Т, С1 – вартість зберігання одиниці продукції за одиицю часу, С2 – штраф за нестачу одиниці продукції,
СS – вартість замовлення, вартість запуску партії у виробництво, Q – очікувані сімарні затрати.

Нехай фірма повинна постачати своїи клієнтам R виробів рівномірно протягом інтервалу Т. Нестача не допускається, тобто штраф С2 нескінченно великий. Змінні затрати складаються з затрат на зберігання готового продукту і затрат на запуск у виробництво чергової партії виробів.
Зрозуміло, що число потрібних партій R/q, tS=(Tq/R)/ Якщо на початку інтервалу на складі q виробів, в кінці – нуль, відвантаження йде рівномірно, то середній запас q/2, затрати на зберігання: 0,5C1qtS, загальна вартість створення запасів в інтервалі ts буде 0,5C1qtS+CS, а за Т повна вартість Q=(0,5C1qtS+CS)R/q=(0,5C1qTq/R+CS)R/q=0,5C1Tq+CSR/q.

Розв’язок цієї задачі нескладно отримати з рівняння dq/dQ=0.

[8, с.45].
Особисто мені дуже сподобався приклад з теорії ігор з використанням матриці рішень. Таких прикладів може бути безліч, але не всі вони завжди мають оптимальний роз’вязок. Якщо ми пригадаємо приклад з автомобільним салоном, то там гравець поводив себе дуже обережно, обираючи стратегію найменшого, але 100%-во гарантованого прибутку. На практиці ж найчастіше підприємець або ОПР грає на власний ризик з метою отримати максимум і втратити мінімум.
При чому побудувати ігрову матричну модель дуже важко, бо не завжди ясно, чи враховано всі стратегії твого конкурента чи ні. Дуже багато життєвих прикладів розглядається американськими авторами в підручниках “Основи менеджменту” та “Методи прийняття рішень” [5 і 9], з яких стає зрозуміло, що в багатьох західних компаніях працюють цілі відділи, очолювані професійними економетристами, які розробляють цілі проекти математичного моделювання в організаціях. Недарма в цих організаціях щорічно зростають показники ефективноств їх діяльності. Науково-дослідні інститути закордоном працюють над новими моделями, які раніше чи пізніше пристосуються до практики управління.

Щоб якимось чином впорядкувати та зробити більш наочним питання про сфери застосування тих чи інших моделей і методів наведемо таблицю (див. табл.7).

Таблиця 7:

Сфери застосування моделей і методів обгруниування управлінських рішень.
|Сфера |Види математичних моделей і методів |
|застосування |обгрунтування управлінських рішень, що |
| |застосовуються |
|Управління |Аналогові моделі. Організаційні схеми. |
|персоналом | |
|Управління |Моделі управління запасами. Аналітичні |
|постачанням та|методи. |
|збутом | |
|Організаційні |Математичні моделі. |
|рішення | |
|Обслуговування|Моделі теорії черг (Моделі оптимального |
|великої |обслуговування) |
|кількості | |
|клієнтури | |
|Перевезення |Моделі лінійного програмування. Транспортна |
|продукції та |задача. |
|управління | |
|матеріальними | |
|ресурсами в | |
|умовах | |
|дефіциту | |
|Маркетингові |Математично-статистичні методи |
|дослідження. | |
|Визначення |Метод платіжної матриці |
|оптимальної | |
|стратегії | |
|фірми | |
|Управління |Теоретико-ігрові методи. Моделі лінійного |
|організацією в|програмування. |
|умовах | |
|конкурентної | |
|боротьби | |

Висновки.

Роздержавлення власності та створення досить великої кількості приватних, колективних, акціонерних, змішаних підприємств як необхідна умова переходу до ринку істотно змінює цілі, організаційну структуру, функції та методи господарської діяльності підприємств. В умовах конкуренції, яка зароджується, вже сьогодні змінюються психологія та ставлення трудових колективів до економіки свого підприємства, починаються заінтересовані пошуки шляхів підвищення ефективності виробництва, впровадження нових технологій і більш конкурентоспроможних виробів, економічних методів використання ресурсів. Причому це стає актуальним як для недержавних, так і для державних підприємств [2, с.85].

Надзвичайно широкі можливості в розв’язанні завдань по створенню та реорганізації підприємств, вибору оптимальних управлінських структур, зниженню витрат виробництва, переведенню фінансово-економічної діяльності на вищий ступінь (з використанням персональних ЕОМ, елементів автоматизації та оптимізації цих та інших процесів) мають математичні методи обгрунтування управлінських рішень.

Отже, нами був розглянутий математичний підхід до впровадження управлінських рішень у життя. Зробимо наступні висновки:

1. Рішення – це вибір альтернативи, свідомий вибір з наявних варіантів напрямку дій.

2. Рішення – продукт управлінської праці, а його прийняття – це процес, що призводить до появи цього продукту.

3. Вибір рішення повинен грунтуватися на особливостях проблемної ситуації.

4. Вибір методу прийняття рішення повинен базуватися на ступеню проінформованості особи, що приймає рішення.

5. Незалежно від класифікації методів обгрунтування управлінських рішень, особа, що приймає рішення може застосовувати будь-яку модель (фізичну, аналогову або математичну).

6. Математична модель краще пристосовується під процес прийняття рішення, якщо приймається рішення організаційного характеру.

7. В основі прийняття управлінського рішення при застосуванні будь- якої моделі (в тому числі і математичної) лежить принцип оптимізації.

8. Поняття “оптимальне рішення” не може мати ступенів порівняння, тобто це рішення є вже найкращим серед кращих.

В процесі написання даної роботи я усвідомив різницю в трактуванні понять “модель” і “метод”, усвідомив необхідність поглибленого оволодіння математичними та статистисними знаннями при підготовці майбутніх менеджерів. Приведені в роботі приклади з застосуванням математичних моделей на мою думку досить добре проілюстрували весь процес прийняття рішення з боку даної методології.

Головний висновок може бути таким, що незалежно від обраної професії, незалежно від життєвої ситуації людина повинна приймати раціональне рішення. Для того щоб запобігти помилок і отримати необхідну користь, потрібно розуміти весь процес прийняття рішення. Що стосується окремо менеджерів, то незалежно від їх рівня в організації, кожен з них рано чи пізно приймає безпосередню участь в вирішенні проблемної ситуації і для цього потрібні спеціальні знання, в тому числі і математичні, як необхідні і достатні.

Отже нам стає зрозуміло, що методи науки управління підвищують якість рішень, що приймаються за рахунок використання наукового підходу, системної орієнтації та моделей [5, с.244].

Для формування якісних кадрів в вітчизняних організаціях слід насамперед звертати увагу як на покоління молодих менеджерів, так і взагалі на робітників з вищою управлінською освітою. Якщо наші організації як державні, так і недержавні будуть оснащені таким персоналом, це вирішить багато проблем раціонального використання ресурсів, проведення якісної політики фірми та взагалі оптимізації більшості організаційних процесів.

Література.

1. Беспалов Б.А.

Наука и искусство принятия управленческих решений.-К.: Вища школа, 1985.

2. Войнаренко М.

Діалоговий алгоритм розв’язання задачі вибору оптимальних варіантів розвитку підприємства//

Економіка України-1995.-№6.-с.85-88.

3. Евланов Л.Г.

Основы теории принятия решений: М.: АНХ, 1979.

4. Конспект лекцій з курсу “Теорія управління, прочитаних канд. екон. наук, доц. Соболем С.М. студентам 2 курсу спец. 6201 денної форми навчання, 1999 р.

5. Мескон М.Х., Альберт М., Хедоури Ф.

Основы менеджмента: Пер. с англ.-М.: Дело, 1998.

6. Морріс Г.Б.

Керівник той, хто знаходить вихід// Освіта і управління-1998.-№3.-с.77-87.

7. Сіднєв С.П., Шарапов О.Д.

Математичні методи підвищення якості управлінських рішень: Підручник.-К.: ІЗМН, 1997.

8. Трояновский В.М.

Математическое моделирование в менеджменте. Учебное пособие. - М.: Русская

Деловая Литература, 1999.

9. Эддоус М., Стэнсфилд Р.

Методы принятия решений: Пер. с англ. под ред. член-корр. РАН И.И. Елисеевой.-М.: Аудит, Юнити, 1997.

10. Gary Barfoot

Quantitive Methods For Organizational Decision

Making. Стаття, опублікована в мережі Internet 4-го серпня 1998 року. http://iems.nwu.edu/MEM/classes/d07.html

11. Methods Of Decision Making

Internet-ресурс, стаття. www.humber.ac.uk/su/leader/decision.htm

-----------------------
ДІАГНОЗ ПРОБЛЕМИ

НАКОПИЧЕННЯ ІНФОРМАЦІЇ З ПРОБЛЕМИ

РОЗРОБКА АЛЬТЕРНАТИВНИХ ВАРІАНТІВ

ОЦІНКА АЛЬТЕРНАТИВНИХ ВАРІАНТІВ

ПРИЙНЯТТЯ РІШЕННЯ

МЕТОДИ ОБГРУНТУВАННЯ УПРАВЛІНСЬКИХ РІШЕНЬ

КІЛЬКІСНІ МЕТОДИ

ЯКІСНІ МЕТОДИ

ЕКСПЕРТНІ
МЕТОДИ

МЕТОДИ В УМОВАХ ВИЗНАЧЕ- НОСТІ

МЕТОДИ В УМОВАХ ЙМОВІР-НІСНОЇ ВИЗНАЧЕ-НОСТІ

МЕТОДИ В УМОВАХ НЕВИЗНА-ЧЕНОСТІ

АНАЛІТИЧНІ МЕТОДИ

МЕТОДИ ТЕОРІЇ ЙМОВІРНОСТЕЙ ТА МЕТОДИ СТАТИСТИКИ

ТЕОРЕТИКО-ІГРОВІ МЕТОДИ ТА МЕТОДИ СТАТИСТИЧНИХ
РІШЕНЬ

МЕТОДИ МАТЕМАТИЧНОГО ПРОГРАМУВАННЯ

[pic]
[pic]



Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.