скачать рефераты

МЕНЮ


Анализ изменения состава и свойств черноземов лесостепи и степи Зауралья при распашке

Данные таблицы 2 свидетельствуют об удовлетворительной порозности в горизонтах А всех целинных земель. Она составляет 53-54 % от объема почвы. При обработке черноземов порозность повышается до 57-59 %, что, по шкале Н.А.Качинского, характеризует пахотный слой как культурный с отличной порозностью (И.С.Кауричев, 1982). Однако в подпахотном горизонте выщелоченного и обыкновенного черноземов в результате воздействия техники порозность снизилась до 48-49 %.

В черноземе южном, в отличие от других, даже на целине в горизонте В1 порозность составляет 49 %, а при использовании под пашню снижается до 47 %. Эта тенденция свидетельствует о воздействии техники на свойства чернозема южного при выраженном солонцовом процессе почвообразования.

Наименьшая влагоемкость (НВ), по классификации А.А. Роде (1975), характеризует наибольшее количество капиллярно - подвешенной влаги, которое может удерживать почва после стекания избытка влаги при отсутствии подпора грунтовых вод (глубоком залегании).

Изучаемые черноземы находятся в разных по увлажнению условиях, что важно для хода почвообразования, микробиологических процессов.

Величина НВ зависит от гранулометрического состава почвы, ее плотности, структурного состояния и содержания гумуса. Так как черноземы для исследований взяты одинакового гранулометрического состава - среднесуглинистые, то можно сказать, что НВ будет определяться в основном содержанием гумуса.

С уменьшением содержания гумуса и физической глины (частиц <0,01 мм) значение величины НВ изменяется. Показатель НВ на целине в горизонте А наибольший (26,0 %) - у выщелоченных и наименьший (22,4 %) - у южных черноземов, что связано с содержанием гумуса при одинаковом гранулометрическом составе.

На пашне величина показателя НВ уменьшается в связи со снижением гумуса при деградации (таблица 2). Но в целом, водоудерживающая способность черноземов среднесуглинистых лесостепи и степи достаточно высокая.

Запасы влаги в слое 0-100 см при НВ различаются в зависимости от вида угодья и почвенной подзоны: на пашне в черноземе выщелоченном они составляют 328 мм; обыкновенном - 349 мм; южном - 290 мм; на целине они выше: 336 мм, 353 мм, 299 мм соответственно.

Таким образом, запасы влаги при НВ снижаются в южной части степной зоны. Это связано с развитием ветровой эрозии, о чем свидетельствует понижение содержания частиц меньше 0,01 мм в горизонте А чернозема южного, особенно на пашне.

3.2.2 Агрегатный состав

Совокупность агрегатов различной величины, формы и качественного состава называется структурой почвы. Структура - важнейшая агрономическая характеристика почв. От нее зависят общие физические, физико-механические, водные, воздушные и тепловые свойства почв, окислительно-восстановительные условия и связанные с ними условия микробиологической деятельности и другие свойства и режимы почв.

Распределение структурных агрегатов в массе почвы в соответствии с их размерами определяет агрегатный состав почвы. По данным А.А. Яскина и других (В.П. Ковриго, 2000), структурные агрегаты по размеру делят на 3 группы: глыбистая структура - размер более 10 мм; макроструктура - размер 10,0-0,25 мм; микроструктура - размер менее 0,25 мм.

Агрономически ценной является комковатая и зернистая макроструктура верхних горизонтов почвы размером от 0,25 до 10 мм, обладающая водопрочностью и связностью.

Количественный и качественный состав макроструктурных отдельностей почвы в значительной степени определяет также ее противоэрозионную устойчивость. Агрегаты диаметром более 2 мм являются эффективным защитным противоэрозионным слоем. Менее эффективна роль агрегатов размером 1-2 мм, а агрегаты менее 0,5 мм совсем неэффективны и легко переносятся ветром.

Комковатость слоя 0-5 см является диагностическим признаком устойчивости почв к ветровой эрозии, если на поверхности нет борозд или стерни, которые изменяют этот признак в ту или иную сторону.

Созданию благоприятных физических свойств почвы и условий плодородия способствуют агрегаты от 10 до 0,25 мм; с точки зрения ветроустойчивости, лишь агрегаты крупнее 1 мм обладают большей устойчивостью в течение летнего сезона.

В наших исследованиях (таблица 3), на глубине 0-5см, у черноземов выщелоченных целины ветроустойчивые агрегаты (более 1 мм) составляют 67,1 %, очень близок этот показатель на пашне (64,6 %). Эрозионно-опасная фракция составляет 32,9 % и 35,4 % соответственно.

При проведении сухого просеивания видно, что выщелоченные черноземы ветровой эрозии не подвержены. Содержание эрозионно-опасной фракции в этих почвах сравнительно невелико, но на пашне их больше на 2,5 %.

Таблица 3

Агрегатный состав черноземов выщелоченных

Название почвы

Содержание фракций, % при размере, мм

<0.25

0.25-0.5

0.5-1

1-2

2-3

3-5

5-7

7-10

>10

Сухое просеивание.

Целина

8,6

4,8

6,0

19,3

13,6

14,4

11,5

8,3

13,5

Пашня

9,8

5,6

5,6

18,8

12,1

13,7

10,2

9,8

14,4

Мокрое просеивание.

Целина

12,4

2,8

12,1

10,6

7,4

9,2

11,3

14,0

20,2

Пашня

25,4

5,3

6,1

12,7

9,5

9,0

7,5

6,7

17,8

При мокром просеивании чернозема выщелоченного среднесуглинистого количество водопрочных агрегатов размером 1-10 мм на пашне 45,4 %. Данные почвы хотя и слабо, но подвержены водной эрозии, причиной этого является распашка, способствующая дезагрегации почвы. На целине в черноземах выщелоченных количество агрегатов более 1 мм - 52,5 %(таблица 3). До крайнего допустимого предела устойчивости интервал составляет всего 2,5 %. Следовательно, эти почвы генетически подвержены водной и слабо подвержены ветровой эрозии.

Противоэрозионная устойчивость черноземов обыкновенных среднесуглинистого состава иная (таблица 4).

При сухом просеивании количество эрозионно-устойчивых агрегатов более 1 мм на пашне составляет 48,8 %, на целине - 63,9 %. Сравнивая показатели ветроустойчивости на черноземе обыкновенном (агрегаты более 1 мм) на целине и пашне, можно увидеть, что пашня подвержена больше ветровой эрозии. Это связано с применением различных агротехнических мероприятий, отклонениями от принятых технологий.

В то же время пашня может подвергаться и водной эрозии.

Таблица 4

Агрегатный состав черноземов обыкновенных

Название почвы

Содержание фракций, % при размере, мм

<0.25

0.25-0.5

0.5-1

1-2

2-3

3-5

5-7

7-10

>10

Сухое просеивание.

Целина

14,7

2,7

3,1

8,5

17,3

10,8

6,7

20,6

15,6

Пашня

21,3

5,4

0,6

6,9

14,0

2,7

6,8

18,4

23,9

Мокрое просеивание.

Целина

21,8

7,0

5,8

4,6

12,1

6,2

9,3

20,5

12,7

Пашня

23,7

7,4

6,3

7,9

8,4

12,4

9,2

10,9

13,8

Количество водопрочных агрегатов здесь составляет 48,8 %, на целине же количество агрегатов больше 1 мм - 52,7 %. До крайнего допустимого предела или порога устойчивости интервал составляет всего 2,7 %.

Таким образом, черноземы обыкновенные в пашне подвержены как водной, так и ветровой эрозии.

При исследовании агрегатного состава чернозема южного (таблица 5) видно, что эти на пашне почвы сильно подвержены ветровой эрозии. Количество ветроустойчивых агрегатов составляет всего 28,9 %, а водопрочных - 30,8 %.

По мнению А.П. Щербакова (2000), процесс агрогенной деградации может распространяться на глубину более 0,5 м и обычно усиливается в условиях орошения.

Таким образом, при распашке все черноземы Челябинской области подвержены в разной степени водной, а черноземы обыкновенные и южные и ветровой эрозии. Наиболее устойчивым к эрозионным процессам является чернозем выщелоченный, который даже на пашне слабо подвергается только водной эрозии.

Таблица 5

Агрегатный состав черноземов южных

Название почвы

Содержание фракций, % при размере, мм

<0.25

0.25-0.5

0.5-1

1-2

2-3

3-5

5-7

7-10

>10

Сухое просеивание.

Целина

3,6

7,5

11,1

5,8

18,6

9,8

10,5

12,7

20,4

Пашня

36,4

13,0

10,1

8,0

6,3

3,8

5,5

5,3

11,6

Мокрое просеивание.

Целина

23,0

8,3

7,6

12,5

11,1

8,3

9,9

10,8

8,5

Пашня

42,6

6,6

6,7

6,8

3,7

7,8

5,0

7,5

13,3

Целина же более устойчива к эрозионным процессам. В пахотных эродированных почвах уменьшается содержание пылеватой и илистой фракций, что вызывает существенные изменения в их химическом составе. При этом происходит значительный вынос органического вещества и элементов питания растений, дезагрегирование почвы.

Рассматривая физические и водные свойства черноземов Челябинской области видно, что они подвержены деградации, а, следовательно, возможно изменение хода почвообразовательных процессов в негативную сторону - снижение гумусово-аккумулятивного процесса, развитие осолонцевания, а вслед за ним осолодения. В большей степени деградационные изменения проявятся в черноземах обыкновенном и южном.

Таким образом, применение почвосберегающих технологий, повышающих или сохраняющих содержание гумуса, может привести к интенсивному гумусово-аккумулятивному процессу, улучшающему агрегатный состав и другие свойства черноземов.

3.2.3 Агрохимическое состояние

Содержание гумуса, мощность гумусового слоя и состав гумуса являются важными показателями потенциального плодородия почвы. Однако как его интегрированный показатель гумус черноземов подвержен заметным изменениям под действием возрастающей антропогенной нагрузки на пахотные почвы. В первые 10-20 лет после распашки происходит наиболее резкое снижение количества источников гумуса (Н.Ф. Ганжара, 2001). Потери и недостаток легкоразлагаемых органических веществ приводит к усилению процессов выпахивания: ухудшение структуры, физических и водно-физических свойств, ухудшение питательного режима почв. Средние биологические потери гумуса в пахотном слое за все время использования черноземов составляют, примерно, 15-20 %. Восстановить содержание гумуса в пахотных черноземах до уровня целинных практически невозможно из-за большой разницы в количестве поступающих источников гумуса на целине и пашне и различий в функционировании естественных фитоценозов и агроценозов.

Гумусное состояние почвы характеризуют показатели содержания гумуса, его распределение по профилю и запасы.

Важнейшей особенностью агрохимического состава черноземов Челябинской области является богатство их гумусом. Оно в большинстве случаев превышает 6 % в относительном исчислении и 150 т/га при определении запаса в пахотном слое 0-20см (В.П. Козаченко, 1999). По принятой градации - это средний показатель гумусового состояния. Содержание гумуса черноземов постепенно убывает вниз по профилю, что обусловлено характером распределения корневых систем травянистой растительности. Агрохимическое состояние черноземов представлено в таблице 6.

Гумус черноземов характеризуется преобладанием гуминовых кислот над фульвокислотами (Сг.к:Сф.к.=1,5-2). Гуминовые кислоты отличаются высокой степенью конденсированности, а фульвокислоты - почти полным отсутствием их свободных форм (Ю.Д. Кушниренко, 1968).

Таблица 6

Агрохимическая характеристика черноземов

Почва

Горизонт

Глубина, см

Гумус

Содержание подвижных форм

PHв

%

т/га

N-NO3

P2O5

K2O

Чернозем выщелоченный.

Целина

Пашня

А0

А

В1

В2

ВС

С

Апах

А

В1

В2

ВС

С

0-3

3-23

23-42

42-73

73-95

95-120

0-20

20-26

26-36

36-72

72-95

95-120

-

8,51

4,82

2,85

0,20

-

7,08

8,10

4,77

2,80

0,20

-

-

204,2

118,1

122,8

6,2

-

155,8

68,0

67,3

141,1

6,6

-

-

6,7

5,3

4,0

1,9

0,5

6,5

6,5

4,4

3,9

1,9

-

-

65

57

42

29

26

63

64

58

45

29

-

-

113

103

109

103

103

113

112

103

109

103

103

-

6,80

6,90

7,10

7,15

7,17

6,50

6,70

7,10

7,13

7,15

7,16

Чернозем обыкновенный.

Целина

Пашня

А0

А

В1

В2

В3к

С

Апах

А

В1

В2

В3

С

0-3

3-27

27-56

56-70

70-107

107-120

0-20

20-26

26-57

57-72

72-100

100-120

-

7,42

6,27

3,01

0,30

-

6,12

7,24

4,81

2,44

0,15

-

-

183,6

232,7

57,7

15,5

-

140,8

60,0

207,3

51,2

6,0

-

-

6,9

5,5

3,9

2,8

1,8

6,5

5,0

3,3

2,5

1,0

-

-

50

36

27

10

5

50

42

21

7

3

-

-

155

129

130

115

107

148

121

132

114

100

-

-

7,0

7,2

7,5

8,3

8,5

7,0

7,1

7,4

8,0

8,3

8,4

Чернозем южный.

Целина

Пашня

А0

А

В1

В2

В3

С

Апах

В1

В2

В3

С

0-3

3-18

18-49

49-72

72-90

90-120

0-20

20-46

46-70

70-89

89-120

-

5,46

3,65

1,20

0,40

-

4,20

3,05

1,20

0,10

-

-

101,6

155,0

38,6

9,9

-

92,4

111,0

40,3

2,7

-

-

3,9

2,5

1,9

0,1

-

3,1

2,2

1,8

0,1

-

-

13

8

8

5

-

12

9

7

5

-

-

178

129

110

110

-

170

127

100

100

95

-

7,1

7,9

7,8

8,0

8,7

7,0

8,0

7,5

709

8,5

Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.