скачать рефераты

МЕНЮ


Исследование сопротивления вертикальным нагрузкам бипирамидальных свай

                                     (2.25)

где                                            (2.26)

При вычислении коэффициентов матриц KSU и KBU используется решение Миндлина

                   (2.27)

где R1, R2, r1 - определяются по формулам (2.4), (2.5), (2.6).

Коэффициенты матрицы KSU вычисляются интегрированием выражения

                                    (2.28)

где                          (2.29)

Коэффициенты матрицы KBU равны интегралу

                                    (2.30)

где                         (2.31)

Фундаментальное решение Миндлина в матрице KRU определяется формулой


(2.32)

где R1, R2, x, y - определяются по формулам (2.19), (2.20), (2.21), (2.22).


Коэффициенты матрицы KRU определяются интегралом

                                               (2.33)

где    r =  arz.                                                                                        (2.34)




2.2.4. Определение напряжений на поверхности фундамента

Когда сформирована глобальная матрица К и задан вектор-столбец

                                                    (2.35)              решается система алгебраических уравнений (2.16) методом Гаусса с помощью процедуры GAUSP, в результате получим значения напряжений t и s2 в узлах боковой поверхности и напряжение s1 в узлах нижнего конца фундамента.


2.2.5. Определение общего сопротивления фундамента


Усилия на элементах боковой поверхности фундамента получим

                                                                                (2.36)

а усилия на элементах нижнего конца

                                                                               (2.37)

Суммарное значение силы трения определяется

                                                                                   (2.38)

а сила под  нижним концом

                                                                                   (2.39)

Общее сопротивление фундамента при заданной осадке r = ed1 равно

                                      Рс = Рб + Р0;                                                    (2.40)

Таким образом в результате применения изложенной методики расчета по методу граничных элементов с использованием решения Миндлина можно определить общее сопротивление фундамента в вытрамбованном котловане при заданной осадке.


Раздел 3. Результаты теоретических исследований сопротивления бипирамидальных свай


В данной работе согласно, описанной в разделе 2 методике, выполнены расчеты сопротивления бипирамидальных свай для грунтовых условий и типоразмеров свай по результатам исследований, представленных в работах [10 ¸ 15]. Теоретические модели взаимодействия свай в этих работах построены на основе теории проф. Голубкова В.Н. с использованием понятий зон уплотнения и деформаций. Эта теория построена на применении опытных данных, имеет полуэмпирический характер и требует дальнейшего развития.

Сравнение результатов экспериментов, выполненных в натурных условиях и расчетов с использованием метода граничных элементов позволяет оценить достоверность и надежность нового метода прогноза осадок бипирамидальных свай.

Далее кратко рассмотрены результаты полевых исследований сопротивления бипирамидальных свай выполненных в полевых условиях     [10, 11].

Экспериментальные исследования сопротивления бипирамидальных свай выполнены на двух опытных площадках. Первая площадка представлена лессовидным суглинком (модуль деформации Е = 14500 кПа и коэффициент Пуассона n = 0,35). Вторая площадка представлена лессом (модуль деформации Е = 12000 кПа и коэффициент Пуассона n = 0,38).

В экспериментальных исследованиях была поставлена задача выявить рациональные соотношения между геометрическими размерами верхней части бипирамидальной сваи (оголовка) и нижней ее части (острия). В связи с этим, были испытаны четыре типоразмера свай на первой площадке (С-1, С-2, С-3, С-4) и пять типоразмеров на второй площадке  (С'-1, С'-2, С'-3, С'-4, C'-4a). Кроме того на обеих площадках были испытаны статической нагрузкой забивные оголовки (С-0 и С'-0) и призматические сваи (С-пр и С'-пр). Геометрические размеры свай представлены на рис. 3.1. Как видно из рис. 3.1 бипирамидальные сваи С-1, С-2, С-3 (первая площадка) и сваи С'-1, С'-2, С'-3 (вторая площадка) имеют одинаковые размеры верхней части (оголовка), а длина нижней части для свай С-1 и С'-1 равна 0,7 м., для свай С-2 и С'-2 - 1,2 м., для свай С-3 и С'-3 - 1,7 м.

 Здесь было намечено выявить влияние  длины нижней части бипирамидальной сваи на работу оголовка. Предполагалось, что уплотненный грунт при забивке нижнего конца создает условия для повышения сопротивления верхней части. И как показывают опытные данные (см. таблицу) на первой площадке сопротивления сваи С-3 (р = 394 кН), выше сопротивление сваи С-1 (р = 264 кН) в 1,49 раза, а соотношения тех же показателей для свай на второй площадке составляет - 1,33. То есть при увеличении бетона на 27% имеем большие приращения сопротивления вертикальной нагрузке. В связи с этим можно считать, что среди рассмотренных типоразмеров сваи, наиболее рациональной является бипирамидальная свая С-3 для первой площадки и С'-3 для второй площадки.

На рис. 3.2 представлены значения сопротивлений бипирамидальных свай, полученные экспериментальным путем (Рэкс) и расчетом по изложенной в разделе 2 методике (Рт). Как видно из рисунка, значительная часть теоретических данных близко расположена к прямой, проходящей через начало координат и под углом 45о к осям координат (случай идеального совпадения экспериментальных и теоретических данных).  Вместе с тем для сваи С'р, Спр, Спир, С'пир - теоретические данные больше экспериментальных. То есть, для этих типов свай необходимо вводить коэффициент запаса (надежности) больше единицы. Согласно данных приведенных в таблице 3.1 (колонка 7) этот коэффициент не превышает 18% (С'пр - Рэкс/Рт = 0,814). Для свай Ср, С'-4а экспериментальные данные на 20% превышают теоретические. То есть, в этом случае сопротивление свай может быть занижено по сравнению с действительным и здесь можно использовать коэффициент надежности меньше единицы, если принять такое соотношение

                                gн = Рт/Рэкс,                                             (3.1)

где   gн - коэффициент надежности расчета.

Для оценки влияния продольной формы свай введены коэффициенты которые определяются по формулам:


Коэффициенты остроты сваи

                                                                      (3.2)

где   В - размер поперечного сечения сваи в голове;

        Vсв - объем погруженной части сваи;

 

Коэффициенты полноты сваи

                                                                         (3.3)

где   L - длина заглубленной (погруженной) части сваи.

 В данной работе выполнено исследование влияния коэффициента yв на сопротивление бипирамидальных, пирамидальных и призматических свай (Рт), которое определено теоретически. При этом подразумевалось, что теоретическое значение, как показывает ранее выполненный здесь анализ, отражает экспериментальные данные с точностью достаточной для практики проектирования, но имеют более плавный характер изменения по сравнению с экспериментальными данными, которые имеют разброс, обусловленный методикой испытаний (измерение осадки, нагрузка), процессом забивки, изготовления свай.

На рис. 3.3 и 3.4 представлены зависимости сопротивления свай (Рт) при заданной осадке (рис. 3.3) и удельного сопротивления тех же свай (Рту) в зависимости от коэффициента формы yв.

Из рис. 3.3 видно, что сопротивление свай различной формы (призматические, пирамидальные, бипирамидальные), если объемы их погруженной части одинаковые, возрастает практически прямо пропорционально коэффициенту формы yв (кривые 1, 2). В случае бипирамидальных свай, которые имеют верхнюю часть (оголовок) равных размеров и одинаковой формы, а нижняя часть имеет разную длину, сопротивление возрастает при некотором уменьшении коэффициента yв. Кроме того следует отметить, что значение сопротивлений подобных свай, но испытанных в условиях первой и второй площадок  изменяются в зависимости от модуля деформации грунта соответствующей площадки. Так как модуль деформации на второй площадке меньше чем на первой, то и сопротивления всех свай испытанных на второй площадке меньше сопротивлений таких же свай испытанных на первой площадке. теоретические данные в этом направлении соответствуют результатам полевых опытов. То есть, использованные в расчетах характеристики (модуля деформации) позволяет отразить влияние грунтовых условий на сопротивление свай вертикальной нагрузке.

Из рис. 3.4 видно, что удельное сопротивление свай призматической, пирамидальной, бипирамидальной формы возрастает пропорционально коэффициенту yв. При этом удельное сопротивление призматических свай наименьшее и составляет 700 кН/м3 (для I площадки) - 400 кН/м3 (для II площадки). Удельное сопротивление пирамидальных свай примерно в 2 ... 3 раза выше призматических и для первой площадки составляет 1500 кН/м3 и 1300 кН/м3 для второй площадки. Удельное сопротивление бипирамидальных свай в условиях первой площадки достигает 2300 кН/м3 и 1900 кН/м3 на второй площадке. Таким образом, удельное сопротивление бипирамидальных свай примерно в 2 раза выше чем пирамидальных и в 4... 5 раз выше призматических.


Общие выводы


1. Сопротивление бипирамидальных, пирамидальных, призматических свай вертикальной нагрузке возрастает прямо пропорционально коэффициенту продольной формы yв, при одинаковых объемах погруженной части свай.


2. Сопротивление бипирамидальных свай возрастает если верхняя часть сваи (оголовок) имеет одинаковые размеры, а отношение длины нижней части к длине (высоте) оголовка составляет Lн/Lв = 2,3 ... 5,7.


3. Сопротивление бипирамидальных свай при заданной осадке можно определить с помощью разработанной методики с использованием модели основания как упругой среды, основанной на применении решения Миндлина и реализованной с помощью численной методики метода граничных элементов. Максимальное значение разбежности результатов расчета и эксперимента не превышает 21%, а среднее значение разбежности составляет 7% - 11%, что не превышает погрешностей эксперимента.


4. Направлениями дальнейших исследований с целью повышения сходимости результатов расчета и экспериментов могут быть:

- исследование напряженно-деформированного состояния бипирамидальных свай;

- расчет сопротивления бипирамидальных свай с учетом пластических деформаций их основания;

- применение граничных элементов для трехмерной пространственной задачи взаимодействия бипирамидальной сваи с основанием.


С-1             80´80                      С-2           80´80                                С-3           80´80

               

                                                                                                                   

                   29                                          29                                 29            

                                   

                                                                                                                              

                                                                                                                     

            7´7

                                                              7´7    

                                                                       

                                                                                                              7´7

        С-4   80               С-4 по 1-1     80                        С-4а             80              С-4а по 2-2   80        

       

  1                                                                2                                                       

               

                30                                                              40                                    

               

               


                                                                                                                                        



 1                                                                     2

         7                                   30                                 7                            30

       

Рис. 3.1. Конструкции бипирамидальных свай

                                                                                                                               

                                                                                                                                Таблица 3.1

Марка сваи

Рэкс, кН

Рт,

кН

Руэкп, кН/м3

Рут, кН/м3

Рэкс/S, кН/м

Руэ/ Рут

S,

 м

Е,

кПа

V

Vсв,

 м3

1

2

3

4

5

6

7

8

9

10

11

12

С-0

320

232

3347

2427

21133

1,379

0,015

14500

0,35

1,757

0,0956

С-1

264

265

2235

2244

17600

0,996

0,015

14500

0,35

1,630

0,1181

С-2

328

306

2448

2284

21867

1,072

0,015

14500

0,35

1,562

0,134

С-3

394

350

2627

2333

26267

1,126

0,015

14500

0,35

1,508

0,150

С-4

411

387

1379

1299

27400

1,062

0,015

14500

0,35

1,200

0,298

С-4а

409

396

1136

1100

27267

1,033

0,015

14500

0,35

1,128

0,360

Спир

308

373

1227

1486

20533

0,826

0,015

14500

0,35

1,080

0,251

Спр

189

202

724

774

25200

0,935

0,075

14500

0,35

0,548

0,261

С'-0

154

192

1611

2008

10267

0,802

0,015

12000

0,35

1,757

0,0956

C'-1

246

219

2083

1863

16400

1,118

0,015

12000

0,35

1,630

0,1181

C'-2

260

253

1940

1888

17333

1,028

0,015

12000

0,35

1,562

0,134

C'-3

327

290

2180

1933

21800

1,128

0,015

12000

0,35

1,508

0,150

C'-4

371

320

1245

1074

24733

1,159

0,015

12000

0,35

1,200

0,298

C'-4a

391

327

1080

908

26067

1,196

0,015

12000

0,35

1,128

0,360

C'-пир

291

309

1159

1231

19400

0,941

0,015

12000

0,35

1,080

0,251

C'-пр

136

167,12

521

429

18133

0,814

0,075

12000

0,35

0,548

0,261



Сопротивление свай по эксперименту,  Рэкс, кН

 


Список использованной литературы


1. Гнатенко-Гонта С.П. Одна из оптимальных форм забивных свай в грунтах I-го типа по просадочности. Труды межвузовской конференции по строительству на лессовых грунтах (тезисы докладов), Изд-во МГУ, 1973.

2. Луга А.А. О повышении эффективности и экономичности свайных фундаментов, Транспортное строительство, 1978, № 8, с. 12-14.

3. Колоколов Н.М., Луга А.А., Глотов Н.Н, Рыбчинский В.П. Забивные сваи с уширенной пятой. Транспортное строительство, 1969,     № 2.

4. Платонов Ю.Н. Несущая способность свай, усиленных забивными оголовками. В сб.: Несущая способность свай в слабых грунтах. Часть 2. ЛДНТП, Л., 1966, с.

5. Платонов Ю.Н. Расчет свай с забивными оголовками. XХII научно-исследовательская конференция, посвященная 100-летию со дня рождения В.И. Ленина, ЛИИЖТ, 1969, с.

6. Тарасов М.В. и др. Эффективность применения свай, усиленных железобетонными оголовками, в просадочных грунтах г. Новосибирска. Сборник докладов и сообщений по свайным фундаментам, М.: Стройиздат, 1968.

7. Луга А.А., Рыбчинский В.П. К вопросу применения забивных свай с улучшенными пятами в условиях слабых грунтов Западно-Сибирской низменности. В сб.: Труды совещания-семинара по обмену опытом строительства в суровых климатических условиях Тюмени, Тюмень, 1968, с. 24-25.

8. Грутман М.С., Циприанович И.В, Шпигель И.Д. Фундамент "свая с шайбой". Материалы к XXIX научно-технической конференции, секция оснований и фундаментов. - К., 1968.

9. Грутман М.С. Свайные - К.: Будівельник, 1969.

10. Моргун А.И. Экспериментальные исследования работы бипирамидальных свай на вертикальную нагрузку. В сб. научных трудов Института строительства и архитектуры Госстроя БССР "Свайные фундаменты", Минск, 1975, с.

11. Моргун А.И. Полевые исследования деформаций основания бипирамидальных свай. Научные труды Института строительства и архитектуры Госстроя БССР, в сб. "Свайные фундаменты", Минск, 1975, с.

12. Моргун А.И. О геометрических параметрах висячих свай, определяющих формирование зоны уплотнения. Труды института строительства Госстроя БССР. В сб. "Основания и фундаменты", вып. ХII, Минск, 1976, с.

13. Моргун А.И., Шахирев В.Б. Эффективная конструкция короткой висячей сваи. В сб.: Реферативная информация. Серия II. Организация, механизация и технология промышленного строительства. Вып. 12, Москва, 1976, с. 7-8.

14. Моргун А.И. О совместной работе бипирамидальных свай. В кн.: Новые фундаменты на стройках Одессы. Изд-во Маяк, Одесса, 1975, с. 27.

15. Моргун А.И. Экспериментальные исследования совместной работы бипирамидальных свай с их основанием. Автореферат диссертации на соискание ученой степени канд. техн. наук, Одесса, ОИСИ, 1976, с. 20.

16. Голубков В.Н. Экспериментальные исследования работы свай на вертикальную нагрузку. В сб.: "Свайные и естественные основания" № 10, Госстройиздат, М.-Л., 1939.

17. Голубков В.Н. Несущая способность свайных оснований, Машгиз, 1954.

18. СНиП 2.02.03.85. Свайные фундаменты. - М., 1986.

19. Абраменко П.Г. О распределении сил трения вдоль боковой поверхности свай. Ученые записки аспирантов и соискателей Ленинградского политехнического ин-та, Л., 1964, с. 120-124.

20. Бартоломей А.А. Расчет осадок ленточных свайных фундаментов - М.: Стройиздат, 1972, 128 с.

21. Бахолдин Б.В., Игонькин Н.Т. К вопросу о сопротивлении грунта по боковой поверхности сваи. В сб.: Основания, фундаменты и подземные сооружения. Труды НИИОСП, вып. 58, 1968, с. 9-13.

22. Колесник Г.С., Шахирев В.Б, Моргун А.И. Распределение усилий между острием и стволом вертикально нагруженных свай. В кн.: Сборник трудов НИИпромстроя, вып. 13, Уфа, Башкирское книжное издательство, 1973, с. 73-78

23. Таланов Г.П., Лычев П.П. Экспериментальное определение эпюр удельного сопротивления грунта по боковой поверхности свай. В сб.: Основания и фундаменты, вып. 6, Киев: Будівельник, 1973, с. 124-129.

24. Mohan D., Jain G., Kumar V. Load bearing capacity of piles. Geotechnique, Vol. XII, № 1, 1963.

25. Seed N.B. and Reese L.C. The action of soil clay around friction piles. Proc. Amer. Sol. Civil Engrs, 81, Paper 842, 1955, December, 28 pp.

26. Бенарджи П., Батерфилд Р. Методы граничных элементов в прикладных науках. М, Мир, 1984, 494 с.

27. Бартоломей А.А. Основы расчета ленточных свайных фундаментов по предельно допустимым осадкам. - М.: Стройиздат, 1982, 222 с.

28. Федоровский В.Г. К выбору метода расчета свай при действии продольной и поперечной нагрузок. Труды ин-та НИИ оснований и подземных сооружений, вып. 82, 1984, с. 3-13.

29. Бойко И.П. Свайные фундаменты на нелинейно-деформируемом основании. Автореферат на соискание ученой степени д.т.н. М. НИИ оснований и подземных сооружений, М., 1989, с. 45.

30. Ottaviani M. Three Dimensional Finite Element analysis of Vertical Loaded Pile Groups. Geotechnique, London, Vol. 25, № 2, 1975, pp. 159-174.

31. Petrasovits G. Behaviour of Pile Group under load in granular soils. Asta Technica Academial Scientiarum Hungarical, 98 (1-2), 1985, p. 105-113.

32. Швецов А.В., Мялицына И.А., Мялицын А.Г. Определение напряженно-деформированного состояния биконической сваи на основе вязкоупругой модели. Труды II всесоюзной конференции, современные проблемы свайного фундаментостроения в СССР. В сб.: Расчет и проектирование сваи и свайных фундаментов. Под общей редакцией проф. А.А. Бартоломея, Пермь, 1990, с. 25-26.

33. Крылов К.Е. Несущая способность свай увеличена вдвое. Строительство и архитектура, Ленинград, 1964, № 1, с. 25-27.

34. Бреббня К., Уокер С. Применение метода граничных элементов в технике. М.: Мир, 1982, 248 с.

35. Бреббня К., Телесс Ж., Вроубел Л. Методы граничных элементов. М.: Мир, 1987, 524 с.

36. Теллес Д.К. Применение метода граничных задач для решения неупругих задач. М.: Стройиздат, 1987, - 160 с.

37. Далматов Б.И. Механика грунтов, основания и фундаменты (включая специальный курс инженерной геологии. Издание второе, переработанное и дополненное. Л.: Стройиздат, ЛО, 1988, 416 с.

38. Далматов Б.И. Механика грунтов, основания и фундаменты: Учебник для вузов. - М.: Стройиздат, 1981, 319 с.

39. Харр М.Е. Основы теоретической механики грунтов. - М.: Стройиздат, 1971, 320 с.

40. Горбунов-Посадов М.И., Маликова Т.А., Соломин В.И. Расчет конструкций на упругом основании. Издание третье, переработанное и дополненное. М.: Стройиздат, 1984, 679 с.

41. Миндлин Р., Чень Д. Сосредоточенная сила в упругом полупространстве. Механика. Сб. сокращенных переводов иностранной периодической литературы, № 4(14), ИЛ, 1952.

42. Любимов С.А., Кочан Ю.И. Несущая способность призматических свай с забивными оголовками на водонасыщенных грунтах. В сб.: Строительство на посадочных грунтах. Изд-во Ростовского университета, Р/Н, 1973, с. 62-63.

43. СНиП 2.02.01-83. Основания зданий и сооружений. - М.: Стройиздат, 1985, 35 с.

44. Платонов Ю.А. Исследование работы свай с забивными оголовками. Автореферат дисс. на соискание ученой степени канд. техн. наук, ЛИИЖТ, 1970.

45. Руководство по проектированию свайных фундаментов. М., Стройиздат, 1980, 152 с.

46. Свайные фундаменты. В кн.: Основания и фундаменты. Под ред. Леонардса Д.А. Стройиздат, 1968.

47. Циприанович И.В. Расчет фундамента "свая с шайбой" на вертикальную нагрузку. Свайные фундаменты (тезисы докладов семинара-совещания). - К.: Будівельник, 1971, с.

48. Циприанович И.В. К расчету свай с забивными уширениями на осевую сжимающую нагрузку. В сб.: Основания и фундаменты, Вып. 5 - К.: Будівельник, 1972, с.

49. Лапшин Ф.К.

50. Глушкова Л.И. Экспериментальные исследования несущей способности различных типов свай. В сб.: "Современные проблемы строительства", М., 1970.

51. Власов Ю.В., Соловьев Ю.И., Когтев А.В. Исследование несущей способности свай, усиленных оголовками. Проектирование и строительство инженерных сооружений на макропористых просадочных грунтах. Материалы научно-технического совещания, Алтайское книжное издательство, 1972.

52. Зуев Е.А. Система программирования Turbo Pascal. Под общ. редакцией к.т.н. доцента П.И. Садчикова. - М.: Радио и связь, 1992, 288 с.

53. Временные указания по проектированию и устройству фундаментов из пирамидальных свай. Республиканские строительные нормы РСН-224-71. Госстрой УССР, Киев, 1971, 50 с.





Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.