скачать рефераты

МЕНЮ


Одноэтажное промышленное здание

 Определим расстояние r от центра тяжести приведенного сечения до ядровой точки, наиболее удаленной от максимально растянутой внешней нагрузкой грани сечения. Поскольку N=398,3748 кН > Р2 = 350,202 кН, то величину г вычисляем по формуле:


r = Wpl /[A + 2 α ·(Asp + A'sp)] = 3,1775·106/[250·200+2·6,129·(804)] = 53,0862 мм


Тогда Мrp=Р2(еор2+г) = 350,202·103·(0+53,0862) = 18,5909·106 Н·мм = 18,5909 кН·м; соответственно Мcrc = RbtserWpl + Мrp = 1,95·3,1775·106 + 18,5909·106 =59,2823·106Н·мм =59,2823 кН·м.

Момент внешней продольной силы Mr = N(ео + г) = 22,6242 кН·м,

Поскольку Мcrc = 59,2823 кН·м >Mr = 22,6242 кН·м, то трещины не образуются и расчет по раскрытию трещин не требуется.

Расчет элементов верхнего пояса фермы. В соответствии с эпюрами усилий N и М,

наиболее опасным в верхнем поясе фермы будет сечение 2 с максимальным значением продольной силы. Для сечения 2 имеем усилия от расчетных нагрузок:


N = 492,69 кН; М =2,53 кН·м; NL = 355,18 кН; МL = 1,82 кН·м.


Расчетная длина в плоскости фермы, согласно табл. 33 [2], при эксцентриситете


е0= M/N = 3,7050 мм < h/8 = 22,5 мм будет равна ℓ0= 0,9·ℓ= 0,9·3,224 = 2,9016 м.


Находим случайный эксцентриситет еа>h/30 = 180/30 = 6 мм; еа ≥ 10 мм; принимаем еа = 10 мм.

Так как ℓ0 = 2,9016< 20h = 3.6, то расчет прочности ведем как для сжатого элемента.

Тогда требуемая площадь сечения симметричной арматуры будет равна:


 


Принимаем конструктивно 4Ø10 A-III, (As=A's=314мм2).

При этом μ =(As+A's)/(b·h)=2·226/(300·300)=0,5 > 0,2% (при ℓ0/h > 10).

Попречную арматуру конструируем в соответствии с требованиями п.5.22[2] из арматуры класса Вр-I диаметром 4 мм, устанавливаемую с шагом s=200 мм, что не менее 20d=20·12=240 мм и не более 500 мм.

 Расчет элементов решетки фермы. К элементам решетки относятся стойки и раскосы фермы, имеющие все одинаковые размеры поперечного сечения b=150 мм, h=120 мм для фермы марки 2ФС18.

Максимальные усилия для подбора арматуры в элементах решетки определяются из таблицы результатов статического расчета фермы с учетом четырех возможных схем нагружения снеговой нагрузкой.

Раскос 13-14, подвергающийся растяжению с максимальным усилием N=39,2 кН. Продольная ненапрягаемая арматура класса А-III, Rs=Rsc=365 Мпа. Требуемая площадь сечения рабочей арматуры по условию прочности составит Аs= N/Rs=39,2·103/365=107,3972кН. Принимаем 4 Ø 8 А-III (Аs=201 мм2).

Аналогично конструктивно армируем остальные сжатые элементы решетки, т.к. усилия в них меньше, чем в раскосе 13-14.

Стойка 11-12, подвергающийся растяжению с максимальным усилием N=-15,35 кН, Nl=-8.7 кН. Расчетная длинна l0=0,8·h=1,76·2,2=1,76 м.Так как l0/h=1,76/0,12=14,6667<20, то прогибов не образуется и η=1.

Принимаем симметричное армирование 4 Ø 10 А-III (Аs=314 мм2).

Расчет и конструирование опорного узла фермы.

Расчет выполняем в соответствии с рекомендациями [10]. Усилие в нижнем поясе в крайней панели N = 438,16 кН, а опорная реакция Q = Q мах = 225,73кН.

Необходимую длину зоны передачи напряжений для продольной рабочей Ø 16 мм класса А–III находим по требованиям п. 2.29 [2]:


 lp = (ωp·σsp·Rbt+λp)d = (0,25·700/20 + 10)16 = 300 мм, где σsp = 700 МПа


(большее из значений Rs и σsp), a ωр =0,25 и λр = 10 (см. табл. 28 [2]).

Выполняем расчет на заанкеривание продольной арматуры при разрушении по возможному наклонному сечению ABC, состоящему из участка АВ c наклоном под углом 45° к горизонтали и участка ВС с наклоном под углом 27,6 ° к горизонтали (см. приложение VIII).

Координаты точки В будут равны: у = 105 мм, х = 300 + 105 = 405 мм.

Ряды напрягаемой арматуры, считая снизу, пересекают линию ABC при у, равном: для 1-го ряда – 60 мм, 1Х = 300 + 40 = 345 мм; для 2-го ряда — 300 мм (пересечение с линией ВС), 1Х = 455 мм. Соответственно значения коэффициента γsp = lx/lp (см. табл. 24 [2]) для рядов напрягаемой арматуры составят:

для 1-го ряда — 345/300 = 1,15; для 2-го ряда — 455/300 = 1,5167.

Усилие, воспринимаемое напрягаемой арматурой в сечении ABC:


Nsp = Rs·∑γspi·Aspi = 680(1,15 · 402 + 1,5167 · 402) = 728,9691·103H = 728,9691 кН.


Из формулы (1) [10] находим усилие, которое должно быть воспринято ненапрягаемой арматурой при вертикальных поперечных стержнях:

Ns=N–Nsp=438,16–728,9691= –290,8091 кН.

Требуемое количество продольной ненапрягаемой арматуры заданного класса принимаем конструктивно 4 Ø 10 A-III, As = 314 мм2 (Rs = 365 МПа), что более Аsmin=0,15·N/Rs= 0,15·438,16·103/365 = 180,0657 мм2.

Напрягаемую арматуру располагаем в два ряда по высоте: 1-й ряд – у = 85 мм, пересечение с линией АВ при х = 385 мм, lх = 385 — 20 = 365 мм; 2-й ряд – у = 115 мм, пересечение с линией ВС, при х = 429 мм, 1x= 409 мм.

В соответствии с п. 5.14 [2] определяем требуемую длину анке-ровки ненапрягаемой продольной арматуры в сжатом от опорной реакции бетоне. По табл. 37 [2] находим: ωаn = 0,5; ∆λan = 8; λan = 12 и lan,min=200мм.

По формуле (186) [2] получим:

lan = (ωan·Rs/Rb+∆λan)·d=(0,5-365/19,5+8)10=173,5897мм >λan·d = 12·10 = 120 мм


и > lan,min=200 мм. Принимаем lan= 200 мм. Тогда значение коэффициента условий работы ненапрягаемой арматуры γs5 = lx/ly при lx > lan будет равно γs5 =1.

Следовательно, усилие, воспринимаемое ненапрягаемой продольной арматурой, составит. Ns=Rs·∑γs5i·Aspi =365(1·157+1·157)=114,61·103Н=114,61 кН, т. е. принятое количество ненапрягаемой арматуры достаточно для выполнения условия прочности на заанкеривание.

Из условия прочности на действие изгибающего момента в сечении АВ, поперечная арматура не требуется и устанавливается конструктивно.

Принимаем вертикальные хомуты минимального диаметра 6 мм класса A-I с рекомендуемым шагом s = 100 мм.

Определяем минимальное количество продольной арматуры у верхней грани опорного узла в соответствии с п. 6.2 [10]: As = 0,0005A=0,0005-250-780= 97,5мм2. Принимаем 2 Ø 10 A-III, As= 157мм2.


1.3 Оптимизация стропильной конструкции

Методические указания. Программная система АОС-ЖБК [11] позволяет выполнить оптимизацию проектируемой стропильной конструкции по критерию относительной стоимости стали и бетона, при этом за единицу автоматически принимается относительная стоимость рассчитанного студентом варианта по индивидуальному заданию.

Варьируемыми параметрами могут быть: тип стропильной конструкции и соответствующие типы опалубочных форм, классы бетона, классы ненапрягаемой и напрягаемой арматуры.

1.4 Проектирование колонны:

 Таблица 3. Определение основных сочетаний расчетных усилий в сечении 3-3 колонны по оси Б.

Загружения и усилия

Расчетное сочетание усилий (силы – в кН; моменты – в кН/м)

N Mmax

N Mmin

Nmax Mmax (Mmin)

Nmin Mmax (Mmin)


загруженния

1+(10+18)*0,85

1+(6+12)*0,7+14*0,85

1+2+(6+12)*0,7+

+14*0,85

1+(6+12)*0,7+14*0,85

1

У

С

И

Л

И

Я

N

248,89

248,89

324,49

248,89

M

47,0835

-97,289

-90,059

-90,059

N1

248,89

248,89

324,49

324,49

M1

11,29

11,29

18,52

18,52

Nsh

0

0

0

0

Msh

35,7935

-108,58

-108,58

-108,58


загруженния

1+(2+(10+18)*0,85+22)*1

1+((6+14)*0,85+23)*0,9

1+(2+(6+14)*0,85+23)*0,9

1+((6+14)*0,85+23)*0,9

2

У

С

И

Л

И

Я


N

316,93

248,89

316,93

248,89

M

52,4951

-94,09

-87,58

-94,09

N1

248,89

248,89

248,89

248,89

M1

11,29

11,29

11,29

11,29

Nsh

68,04

0

68,04

0

Msh

41,2051

-105,38

-98,87

-105,38


Размеры сечения надкрановой части колонны b=400 мм, h=600 мм. Назначаем для продольной арматуры а=а'=40 мм, тогда h0=h–а=600–40=560 мм.

Определим сначала площадь сечения продольной арматуры со стороны менее растянутой грани (справа) при условии симметричного армирования от действия расчетных усилий в сочетании N и Мmin :


N = 248,89 кН, М = | Mmin | = 97,289 кН·м;

Nl= 248,89 кН, Мl = 11,29; Nsh = 0; Мsh = 108,58 кН·м.


Поскольку имеются нагрузки непродолжительного действия, то вычисляем коэффициент условий работы бетона γbl согласно п. 3.1 [3]. Для этого находим: момент от действия постоянных, длительных и кратковременных нагрузок (кроме нагрузок непродолжительного действия) относительно оси, проходящей через наиболее растянутый (или менее сжатый) стержень арматуры:


 MI=(N – Nsh)(h0 - а')/2 + (М – Msh) = (248,89-0) (0,56-0,04) / 2+ (97,289-108,581)= 53,42 кНм;


то же, от всех нагрузок


MII=N(h0 –а')/2+М= 248,89(0,56–0,04) / 2 + 97,289 = 162,0004 кНм.


Тогда при γb2 =0,9 получим γbl = 0,9МП/МI = 0,9·162 /53,42= 2,73>1,1.

Принимаем уы = 1,1 и Rb = 1,1·19,5 = 21,45 МПа.

Расчетная длина подкрановой части колонны при учете нагрузок от кранов равна l0= 12,375 м (см. табл.1). Так как l0/h=12,375/0,6=6,5>4, то расчет производим с учетом прогиба элемента, вычисляя Ncr по формуле (93) [3]. Для этого находим е0 = M/N=97,28·106/(248,89·103) =390,89 мм > еа = h/30=600/30=20 мм; так как е0/h= 390,9/700=0,55 > δe,min=0,5–0,01·l0/h–0,01Rb=0,2205, принимаем δe =e0/h=0,55.

Поскольку изгибающие моменты от полной нагрузки и от постоянных и длительных нагрузок имеют разные знаки и е0=390,89 мм>0,1h=70 мм, то принимаем φl=1.

С учетом напряженного состояния сечения (малые эксцентриситеты при больших размерах сечения) возьмем для первого приближения коэффициент армирования μ=0,004, тогда при а=Еs/Еb=190 000/32 500=5,85 получим:


 


Коэффициент η будет равен: η= 1/(1–N/ Ncr)=l / (1–248,89/30745)=1,008.

Вычислим значение эксцентриситета с учетом прогиба элемента по формуле:

 е=е0η+(hо—а'}/2= 390,8· 1,008+ (560—40)/2=653,12 мм.

Необходимое продольное армирование определим согласно п. 3.62 [3]. По табл. 18 [3] находим ξR=0,519 и αR=0,384.

Вычислим значения коэффициентов:


αn=N/(Rbbh0)=248,89·103/(21,45 • 400 ×560)=0,0518;

αm1=Ne/(R bh02)=248,89·103 • 653/(21,45 • 400 • 5602)= 0,0604;

б=а'/h0= 40/560=0,0714.

Так как αn < ξR, значения A=A'S определяем по формуле



Поскольку по расчету арматура не требуется, то сечение ее назначаем в соответствии с конструктивными требованиями табл. 47 [3]: A=A'S= 0,002bh0=0,002·400·560=448 мм2.

Тогда получим (A=(As+A's)/(M)=(448+448)/(400·600)=0,0044, что незначительно отличается от предварительно принятого μ=0,004, следовательно ,расчет можно не уточнять, а окончательно принять Ssn=As=448 мм2.

Определим площадь сечения продольной арматуры со стороны наиболее растянутой грани (слева) для несимметричного армирования с учетом, что со стороны сжатой грани (справа) должно удовлетворяться условие A's≥AS,fact =Asn=448 мм2 (по предыдущему расчету). В этом случае расчетные усилия возьмем из сочетания N и Мmin .

Вычислим коэффициент γbl : , MI=(356,75–75,6)(0,56–0,04)/2+(17,22-6,18)= 62,1кНм; MII=356,75(0,56–0,04)/2+17,22= 110 кНм; γb2 =1 получим γbl = 0,9МП/МI=0,9·110/62,1= 1,6>1,1. Принимаем уы = 1,1 и Rb = 1,1·19,8 = 21,78 МПа. кН • м.


η=l/(l–356,75/4958,4)=1,08.


Вычисляем е0 = М / N=17,22·106/(356,75·103)=48,26 мм, тогда e=e0η+(h0-a')/2=48,26· ·1,08+(566—40)/2==312,1 мм.

Площади сечения сжатой и растянутой арматуры определяем согласно п. 3.66 [3].


Тогда получим:



Поскольку по расчету арматура не требуется, то сечение ее назначаем в соответствии с конструктивными требованиями табл. 47 [3]: A=A'S= 0,002bh0=0,002·400·560=448 мм2.

Конструирование продольной и поперечной арматуры колонны с расчётом подкрановой консоли: анализируя результаты расчета всех опасных сечений колонны, целесообразно в надкрановой части принять симметричную продольную арматуру по 2 ø 18 А-III (ASл=Asn=509 мм2>448 мм2).

В подкрановой части колонны наиболее опасным будет сечение 4-4, 5-5, 6-6, для которого у левой грани принимаем продольную арматуру из 2ø20 А-III(ASл=Asn=628мм2>608 мм2).

Поперечную арматуру в надкрановой и подкрановой частях колонны по условию свариваемости принимаем диаметром 5 мм класса Вр-I, которая должна устанавливаться в сварных каркасах с шагом 300 мм (не более 20d=20·18=360 мм).

Выполняем проверку принятого продольного армирования на прочность в плоскости, перпендикулярной раме, при действии максимальных продольных сил.

Для над крановой части колонны имеем: N=324,49 кН; N,=248,89 кН; Nsh=0. Поскольку нет нагрузок непродолжительного действия, то расчетные сопротивления бетона принимаем с γb2=1 (при заданной влажности 80 %). Размеры сечения: b=600мм, h=400 мм. Назначая а=а'=40 мм, получим h0=h-а=400-40=360 мм. Расчетная длина над крановой части колонны l0=5,85 м (см. табл. 2.1). Так как /0/h=5850/400=14,625>4, то необходимо учесть влияние прогиба элемента на его прочность.

Находим значение случайного эксцентриситета:

 еа>h/30=400/30=13,33мм; еа>H2/600=3900/600=6,5мм; еа>10мм. принимаем еа=13,33мм. Тогда соответствующие значения изгибающих моментов будут равны:


М=N·еа=324,49·103·13,33=4,325·106Нмм= 4,325 кНм;

Мl = Nl·eа=248,89·103·13,33=3,12·106 Нмм=3,12 кНм.


Для определения Ncr вычисляем:


 M1l=Nl·(h0—а')/2+Мl=248,89(0,36-0,04)/2+3,12=43,07 кН·м;

 Ml=N(h0—a')/2+M=324,49(0,36-0,04)/2+4,325=56,2434 кНм;

φl=1+(1·43,07)/56,2434= 1.7658<2;

μ=(As+А's)/(bh)=(509+509)/(600·400)=0,00424;


так как ea/h=13,33/400=0,0333<δemin=0,5-0,01·14,625–0,01·19,5=0,158, принимаем δe=δemin=0,156.

Тогда:


 

е=еаη+(h0—а')/2= 13,33 · l,0521+(360—40)/2= 174,0245 мм.


Проверку прочности сечения выполняем по формулам пп. 3.61 и 3.62 [3]. Определяем x=N/(Rbb)=324,49·103/(19,5-600)=27,73 мм. Так как x<ξR·h0=0,519·360=186,84 мм, то прочность сечения проверяем по условию (108) [3]:

 Rbbx(h0–0,5х)+Rsc·A´s(h0-а')=19,5·600·27,73(360–0,5·27,73) +280·509 (360-40) = =157,9·106 Н·мм =157,9 кНм > Ne = 324,42·0,174 = 56,47 кН·м, т. е. прочность надкрановой части колонны в плоскости, перпендикулярной поперечной раме, обеспечена

При проверке прочности подкрановой части колонны в плоскости, перпендикулярной плоскости изгиба, учитываем только угловые стержни по 2 ø20 А-III (As=A's=628мм2). В этом случае имеем размеры сечения: h=700мм, a=400мм и расчетную длину l0=6,6 м (см. табл. 2.1). Так как l0/h=6600/400=16,5>4, то необходимо учесть влияние прогиба элемента на его прочность, а расчетными усилиями в сечении 6 — 6 будут: N=851,25 кН; Nl=397,6 кН; Nsh=385,62 кН.

Находим значение случайного эксцентриситета: еа>h/30=400/30=13,33 мм; еа>H2/700=7560/700=10.08 мм; еа>10 мм. Принимаем еа=13,33 мм. Тогда соответствующие значения изгибающих моментов будут равны:


М=N·еа=922,6·103 ·13,33=12,29·106 Нмм= 12,29 кНм;

 Мl=Nl·eа=468,94 ·103·13,33=6,25·106 Нмм=6,25кНм.


Для определения Ncr вычисляем:


M1l=Nl·(h0-а')/2+Мl=468,94(0,36-0,04)/2+6,25=81,3кНм;

Ml=N(h0-a’)/2+M=922,6(0,36-0,04)/2+12,29=160 кНм;

φl=1+(1·81,3)/160= 1,51<2;

μ=(As+А's)/(bh)=(509+509)/(800·400)=0,00477; так как

ea/h=13,33/400=0,0333<δemin=0,5-0,01·18.9–0,01·19,8=0,113, принимаем δe=δemin=0,113.


Тогда:

' .

е=еаη+(h0—а')/2= 13,33·1,148+(360—40)/2= 175,3 мм.


Проверку прочности сечения выполняем по формулам пп. 3.61 и 3.62 [3]. Определяем


x=N/(Rbb)=922,6·103/(19,8·800)=58,2мм.


Так как x<ξR·h0=0,582·360=209,5мм, то прочность сечения проверяем по условию (108) [3]:

Rbbx(h0–0,5х)+Rsc·A´s(h0-а')=19,8·800·58,2(360-0,5·58,2) +365·763(360-40)=394,17·106Нмм =394,17 кНм > Ne = 922,6·0,1753 = 161,7 кНм, т. е. прочность надкрановой части колонны в плоскости, перпендикулярной поперечной раме, обеспечена.

Расчет прочности подкрановой консоли производим на действие нагрузки от собственного веса подкрановых балок и максимального вертикального давления от двух сближенных мостовых кранов с учетом коэффициента сочетаний ψ=0,85, или Q = G6+Dmaxψ = 48,4+504,1·0,85 = 476,89 кН (см. раздел 2.1).

Проверяем прочность консоли на действие поперечной силы при возможном разрушении по наклонной полосе в соответствии с п. 3.99 [3]. Поскольку 2,5Rbt·b·h0 = 2,5·1,3·400·1060 = =1378·103 Н=1378 кН > Q = 476,89 кН, то по расчету не требуется поперечная арматура. По конструктивным требованиям принимаем хомуты диаметром 6 мм класса A-I, устанавливаемые с максимально допустимым шагом 150 мм.

Для обеспечения прочности консоли в вертикальном сечении на действие изгибающего момента определяем площадь сечения продольной арматуры по формуле (208) [3]:

As=Ql1/(h0Rs)=476,89·103·450/(1060·280)=723,3мм2. Принимаем 3 ø 16 А-III (A5=763мм2).

1.5          Проектирование монолитного внецентренно-нагруженного фундамента:


Для предварительного определения размеров подошвы фундамента находим усилия Nnf и Mnf на уровне подошвы фундамента для комбинации усилий с максимальным эксцентриситетом с учетом нагрузки от ограждающих конструкций.

Расчетная нагрузка от стеновых панелей и остекления равна G3=35,7192 кН (см. раздел 2.1), а для расчета основания Gn3 = G3/γf = 35,7192/1,1 = 32,472 кН. Эксцентриситет приложения этой нагрузки относительно оси фундамента будет равен е3 = 240/2+400 = 520мм = 0,52м.

Анализируя значения усилий в таблице находим, что наиболее неблагоприятной комбинацией для предварительного определения размеров подошвы фундамента по условию максимального эксцентриситета (отрыва фундамента) является вторая комбинация усилий. В этом случае получим следующие значения усилий на уровне подошвы фундамента:


Nfn= Nn + Gn3 = 474,56+32,472 = 507,032 кН;

Мfn=Мп + Q·hf +G3n·е3 = -225,61-29,36·2,4-32,47·0,52= -312,949 кН·м;

e0 = | Мfn / Nfn| = 312,1/575,21 = 0,54 м.


С учетом эксцентриситета продольной силы воспользуемся формулами табл. XII.I. [1] для предварительного определения размеров подошвы фундамента по схеме 2:

 м

 м

м


где γm= 20 кН/м — средний удельный вес фундамента с засыпкой грунта на его обрезах; R= R0 = 0,3 МПа = 300 кПа - условное расчетное сопротивление грунта по индивидуальному заданию.

Принимаем предварительно размеры подошвы фундамента, а =2,7 м и b=2,1 м. Уточняем расчетное сопротивление песчаного грунта основания согласно прил. 3 [9]:


R=R0[1+k1(b– b0)/b0]+ k2·γm(d -d0)=250·(1+0,125·(2,1-1)/1)+0,25·20(2,55-2)=287,125кПа,


где k1 = 0,125 и ki = 0,25 принято для песчаных грунтов по [9].

Определим усилия на уровне подошвы фундамента принятых размеров от нормативных нагрузок и соответствующие им краевые давления на грунт по формулам:


Nninf= Nn + Gn3 +a·b·d·γm·γn; Мninf=Мп + Q·hf +G3n·е3; Pnл(п)= Nninf/Af±Мninf/Af: где γm =1 - для класса ответственности здания I; Af= ab = 2,7·1,8 =5,67 м2;Wf = ba2/6 = 1,8·2,72/6=2,552 м3.


 Таблица 2. Постоянные нагрузки на 1 м² покрытия:

Комбинация усилий от колонны

Усилия

Давление к.Па.

Мninf

Nninf

Pnл
Pnп
Pnm

Первая

943,522

46,95

148,005

184,807

166,406

Вторая
796,202
-312,949

263,077

17,771

140,424

Третья

1061,862

 -212,378

270,514

104,041

187,277


Так как вычисленные значения давлений на грунт основания:

Рnmах =270,514кПа < l,2R = 1,2·287,125 = 344,55 кПа;

Pnmin = 17,771 кПа > 0;

Pnm= 187,277 кПа < R = 287,125 кПа;


 то предварительно назначенные размеры подошвы фундамента удовлетворяют предъявляемым требованиям по деформациям основания и отсутствию отрыва части фундамента от грунта при крановых нагрузках. Таким образом, оставляем окончательно размеры подошвы фундамента а = 2,7 м и b = 2,1 м.

Расчет тела фундамента выполняем для принятых размеров ступеней и стакана согласно рисунку . Глубина стакана назначена в соответствии с типом опалубки колонны по приложению V, а поперечное сечение подколенника имеет размеры типовых конструкций фундаментов под колонны промышленных зданий.

Расчет на продавливание ступеней фундамента не выполняем, так как размеры их входят в объем пирамиды продавливания.

Для расчета арматуры в подошве фундамента определяем реактивное давление грунта основания при действии наиболее неблагоприятной комбинации расчетных усилий (третьей) без учета собственного веса фундамента и грунта на его обрезах. Находим соответствующие усилия на уровне подошвы фундамента:


Ninf= Nc + G3 = 851,25+35,7192 = 886,9692 кН;

Minf= Мc + G3е3 + Qcht = -142,63-35,7192·0,52-39,23·2,4 = -255,356 кНм.


Тогда реактивные давления грунта будут равны:


ршах = 886,9692/5,67 + 255,356/2,5515 = 256,5127 кПа

ршin = 886,9692/5,67 - 255,356/2,5515 = 56,3512 кПа

Р1 = рmах – (рmах – pmin/a)·a1 = 256,5127 – (256,5127 – 56,3512)/2,7·0,3 = 234,27258 кПа;

Р2 = 212,0324 кПа;


 Расчетные изгибающие моменты в сечениях 1 1, 2 2 и т.д. вычисляем по формуле:


М1-1 = b·аi2·(2·рmах+ pi)/6 = 2,1·0,32(2·256,5127+234,2725)/6 = 23,539 кНм;

М 2-2 = 2,1·0,62(2·256,5127+212,0324)/6 = 91,3572 кНм.


Требуемое по расчету сечение арматуры составит:


As,1-1= Ml-1/(Rs·0,9·h01) =23,54·106/(280·0,9·260) = 359,2643 мм2

As,2-2= M2-2/(Rs·0,9·h02) = 91,3572·106/(280·0,9·560) = 647,3724 мм2;   


Принимаем минимальный диаметр арматуры для фундамента при а=2,7 м равным 10 мм. Для основного шага стержней в сетке 200 мм на ширине b = 2,1 м будем иметь в сечении 2–2 9ø10, А-III, As = 707 мм2 > 647,37 мм2. Процент армирования будет равен μ s·100/(b·h04) = =647,37·100/(1800·560) = 0,06 % >μmin = 0,05 %.

Расчет рабочей арматуры сетки плиты фундамента в направлении короткой стороны выполняем на действие среднего реактивного давления грунта рт = 270,053 кПа, соответственно получим:


М3–3=pm·a·b12/2=156,43·2,7·0,32/2 = 19,0062 кНм;

 As,3–3= M3–3/(Rs·0,9·h0) = 19,0062·106/(280·0,9·250) = 301,6857 мм2.


По конструктивным требованиям принимаем минимальное армирование 14ø10, А - III, с шагом 200мм.

Расчет продольной арматуры подколенника выполняем в ослабленном коробчатом сечении 4–4 в плоскости заделки колонны и на уровне низа подколонника в сечении 5–5. Размеры коробчатого сечения стаканной части фундамента преобразуем к эквивалентному двутавровому с размерами, мм: b = 650; h = 1500; bf = b'f = 1200; hf = h'f = 300; а = а´ = 50; h0 = 1450. Вычислим усилия в сечении 4 4 от второй комбинации усилий в колонне с максимальным изгибающим моментом по следующим формулам:


 N =Nc+G3 +ac·bc·dc·γ·γm·γп=545,75 + 35,7192+1,5·1,2·0,9·25·1,1·1 = 626,0192 кН

 M =Mc+Qc·dc+G3·е3= 259,45 + 33,76·0,9 + 35,7192·0,52 = 308,408 кН*м.


 Эксцентриситет продольной силы будет равен:


 e0=M/N=308,4082/626,0192 = 0,493м = 493 мм > еа = h/30 = 1500/30 = 50 мм.

Находим эксцентриситет силы N относительно центра тяжести растянутой арматуры:


 e = eо +(hо – a´)/2 =493 + (1450 – 50)/2 = 1193мм.


Проверяем положение нулевой линии. Так как Rb·b´f·h´f = 11,5·1200·300 = 4140·103 Н = =4140 кН >N= 626,0192 кН, то указанная линия проходит в полке и сечение следует рассчитывать как прямоугольное с шириной b = b'f = 1200 мм. Расчет прочности сечения для случая симметричного армирования выполняем согласно п. 3.62 [3]. Вычисляем коэффициенты:


αn=N/(Rb·b·h0)=626,0192·103/(11,5·1200·1450)=0,0313;

αm1= N·е/(Rb·b·h02) = 626,0192·10³·1193/(11,5·1200·14502) = 0,0257;

δ = а'/h0 = 0,0345.

Требуемую площадь сечения продольной арматуры вычислим по следующей эмпирической формуле:


 


Армирование назначаем в соответствии с конструктивными требованиями в количестве не менее 0,05 % площади подколонника: As = A's = 0,0005·1200·1500 = 900 мм2. Принимаем As = A's = 1005 мм2 (5ø16 А-III).



В сечении 5–5 по аналогичному расчету принято конструктивное армирование.

Поперечное армирование стакана фундамента определяем по расчету на действие максимального изгибающего момента. Вычисляем эксцентриситет продольной силы в колонне от второй комбинации усилий е0 = Mc/Nc = 259,45/545,75 = 0,4754 м. Поскольку еo = 0,4754 м > hс/6 = 0,8/6 = 0,1333 м, то поперечная арматура стакана требуется по расчету. Так как еo = 0,4754 м > hc/2 = 0,4 м, то момент внешних сил в наклонном сечении 6–6 вычисляем по формуле:


M6–6=Mc+Qc·dc – 0,7·Nc·еo= 259,45 + 33,67·0,9 – 545,75·0,4 = 71,534 кНм.


Тогда площадь сечения одного стержня поперечной арматуры стакана фундамента будет равна:


Аs = М6–6/(4·Rs·Σzi) = 71,534·106/[4·225(850+750+550+350+150)] = 29,9932мм2.


Принимаем As = 50,3 мм2 5ø8 A-III).


Список используемой литературы.


1. Байков В.Н., Сигалов Э.Е. Железобетонные конструкции. Общий курс. М.; Стройиздат, 1985.

2. СНиП 2.03.01-84. Бетонные и железобетонные конструкции. М.; ЦИТП, 1985.

3. Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры (к СНиП 2.03.01-84). М.; ЦИТП, 1986.

4. Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов (к СНиП 2.03.01-84). Ч.1. М.; ЦИТП, 1986.

5. Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов (к СНиП 2.03.01-84). Ч.2. М.; ЦИТП, 1986.

6. СНиП 2.03.01-84.Нагрузки и воздействия. М.; ЦИТП, 1987

7. СНиП 2.03.01-84.Основания зданий и сооружений/Госстрой СССР. М.;Стройиздат, 1985.

8. Бородачев Н.А. Автоматизированное проектирование ЖБК одноэтажных промышленных зданий. Методические указания.


Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.