скачать рефераты

МЕНЮ


Системы теплогазоснабжения и вентиляции

·        наибольшая доля теплопотерь (50%) в расходной части теплового баланса существующего здания по базисному варианту № 1 вызвана дополнительными энерго затратами на подогрев инфильтрующегося холодного воздуха в основном через окна, притворы дверей и вертикальные стыки панельных наружных стен;

·        по варианту № 1 доля трансмиссионных теплопотерь через наружные стены зданий должна составить 21,3%, которая в варианте № 3 при утеплении стен и выполнении требований СНиП по обязательному повышению теплозащиты стен до уровня этапа 2 должна быть снижена лишь на 8,6% при рентабельности инвестиций на утепление стен менее 5% за счет стоимости сбереженной теплоты.

·        по альтернативному варианту № 2 без утепления стен, применение энергоэффективных конструкций окон, обеспечивающих при наименьших затратах снижение трансмиссионных теплопотерь и одновременно притока инфильтрующегося воздуха, должно дать в совокупности боле высокий экономический эффект при рентабельности капиталовложений не менее 20%.

·        наряду с применением энергоэффективных окон при реконструкции зданий могут быть использованы и другие энергосберегающие технические решения (регулирование и контроль отпуска теплоты, экономное расходование горячей воды, утепление труб в техническом подвале, утепление тамбуров и входных дверей и др.) при обязательном экономическом обосновании их целесообразности в соизмерении со стоимостью сберегаемой тепловой энергии. Недопустимо превращать утепление реконструируемых зданий в самоцель без технико-экономических обоснований эффективности предлагаемых энергосберегающих технических решений;

·        требования СНиП 11-3-79* в части обязательного утепления ограждающих конструкций реставрируемых и капитально ремонтируемых зданий должны быть пересмотрены;

·        целесообразно дополнительно разработать методические указания по снижению энергопотребления в существующем фонде жилых и гражданских зданий, большинство рекомендаций которых должны быть выполнимы собственными силами квартиросъемщиков и домовладельцев.

II. Методология научных исследований

 

2.1 Основные положения теории познания


Процесс познания как основа любого научного исследования представляет собой сложный диалектический процесс постепенного воспроизведения в сознании человека сущности процессов и явлений окружающей его действительности. В процессе познания человек осваивает мир, преобразует его для улучшения условий своей жизни. Познание есть процесс погружения (ума) в неорганическую природу ради подчинения ее власти субъекта». Движущей силой и конечной целью познания является практика, преобразующая мир на основе его собственных законов.

Теория познания представляет собой учение о закономерностях процесса познания окружающего мира, методах и формах этого процесса, об истине, критериях и условиях ее достоверности. Теория познания является философско-методологической основой любого научного исследования, и поэтому основы этой теории должен знать каждый начинающий исследователь. Методология научного исследования представляет собой учение о принципах построения, формах и способах научного познания.

В теории познания издавна существуют два основных направления: материалистическое и идеалистическое. Идеализм определяет процесс познания как самопознавание мирового духа (Г. Гегель), анализ «комплекса ощущений» (Д. Беркли, махизм), отрицает возможность проникновения в сущность вещей. Материализм в противоположность идеализму определяет познание как отражение реального мира, окружающего человека.

Далее познание переходит в синтез изучаемого объекта, целостное его воссоздание, но на основе предшествующего анализа. Как показал К. Маркс, общий ход человеческого познания, его диалектика выражены в движении мышления от реального исходного конкретного абстрактному и в последующем восхождении от абстрактного к мысленно воссоздаваемому конкретному.

С философской точки зрения методы научного исследования делятся на всеобщие, общенаучные и конкретно-научные. Всеобщим методом научного исследования является материалистическая диалектика, определяющая сущность исследования, его отношение к изучаемому объекту. Она используется во всех областях знаний и на всех этапах исследования. К общенаучным методам относятся анализ, синтез, индукция, дедукция, аналогия, моделирование и абстрагирование.

Общенаучные методы научного исследования имеют ограниченную область применения. Например, наблюдение и эксперимент широко используются в технических науках на всех этапах процесса познания; идеализация и формализация применяются, как правило, на этапе теоретического исследования, но в различных областях знаний.

Конкретно-научные методы исследования характерны для какой-то конкретной области знаний (математики, химии, физики и т. д.) В последние годы в связи с интеграцией науки наметилась тенденция проникновения отдельных методов исследования из одной области знаний в другую; в отдельных случаях группа конкретно-научных методов применяется для исследования одного и того же объекта (например, в молекулярной биологии одновременно используются методы физики, химии, математики и кибернетики).

В каждом научном исследовании можно выделить два основных уровня: 1) эмпирический, на котором происходит процесс чувственного восприятия, установления и накопления фактов; 2) теоретический, на котором достигается синтез знания, проявляющийся чаще всего в виде создания научной теории. В связи с этим общенаучные методы исследования можно разделить на три группы:

1.     Методы эмпирического уровня исследования.

2.     Методы теоретического уровня исследования.

3.     Методы эмпирического и теоретического уровней исследования.

Научные знания представляют собой систему понятий отражающих процесс развития окружающей действительности. Понятие является высшей формой мысли, отражающей общие существенные признаки явлений и предметов материального мира. Примером научных понятий в области термодинамики могут быть температура и идеальный газ, а в области теории теплообмена – теплопроводность, конвекция и тепловой поток.

В любой науке все понятия связываются между собой с помощью - суждений и умозаключений. Суждение – форма мышления, с помощью которой объединяют понятия, утверждая или отрицая наличие у явлений или предметов общего свойства. Умозаключение представляет собой форму мышления, когда из одного или нескольких суждений об объективном мире выводится новое суждение, содержащее новые знания о явлениях или предметах.

 

2.2 Методы эмпирического уровня исследования


Эмпирический уровень исследования связан с выполнением экспериментов, наблюдений и поэтому здесь велика роль чувственных форм отражения окружающего мира. К основным методам эмпирического уровня исследования относятся наблюдение, измерение и эксперимент.

Наблюдение – это целенаправленное и организованное восприятие объекта исследования, позволяющее получить первичный материал для его изучения. Этот метод используется как самостоятельно, так и в сочетании с другими методами. В процессе наблюдения непосредственного воздействия наблюдателя на объект исследования не происходит. Вследствие ограниченности человеческих органов чувств при наблюдениях широко применяются различные приборы и инструменты.

Чтобы наблюдение было плодотворным, оно должно удовлетворять ряду требований. Наблюдение должно вестись для определенной четко поставленной задачи; в первую очередь должны рассматриваться интересующие исследователя стороны явления; наблюдение должно быть активным; надо искать нужные объекты, определенные черты явления. Наблюдение необходимо вести по разработанному плану (схеме), оно должно подчиняться определенной тактике.

Результаты наблюдения дают не только первичную информации об объекте исследования. При правильном объяснении в некоторых случаях они могут привести к крупным открытиям, в связи с чем наблюдательность является одним из важнейших качеств научного работника.

Измерение – это процедура определения численного значения характеристик исследуемых материальных объектов (массы, длины, скорости, температуры, количества теплоты и т.д.). Измерения выполняются с помощью соответствующих измерительных приборов и сводятся к сравнению измеряемой величины с некоторой однородной с ней величиной, принятой в качестве эталона. Измерения дают достаточно точные, количественно определенные описания свойств тел, существенно расширяя познания об окружающей действительности. В результате высококачественных измерений могут быть установлены факты и сделаны эмпирические открытия, приводящие к коренному изменению взглядов в определенной области знаний.

Эксперимент – система операций, воздействий и (или) наблюдений, направленных на получение информации об объекте при исследовательских испытаниях, которые могут осуществляться в естественных и искусственных условиях при изменении характера протекания процесса.

Эксперимент используется на заключительной стадии исследования и есть критерием истинности теорий и гипотез. С другой стороны, эксперимент во многих случаях является источником новых теоретических представлений, развиваемых на основе данных проведенного опыта или законов, следующих из эксперимента. Всякое игнорирование эксперимента неизбежно ведет к ошибкам.

Эксперимент включает в себя выделение объекта исследования, создание необходимых условий для его выполнения, активное воздействие на объект исследования, процессы наблюдения и изменения.

Эксперименты могут быть натурными и модельными. Натурный эксперимент изучает явления и объекты в их естественном состоянии, модельный – моделирует эти процессы, позволяет изучать более широкий диапазон изменения определяющих факторов. Натурный и модельный эксперименты широко применяются при исследовании теплоэнергетических процессов.

 

2.3 Методы теоретического уровня исследования


На теоретическом уровне исследования используются такие общенаучные методы, как идеализация, формализация, принятые гипотезы, создание теории.

Идеализация – это мысленное создание объектов и условий, которые не существуют в действительности и не могут быть созданы практически. Она дает возможность лишить реальные объекты некоторых присущих им свойств или мысленно наделить их нереальными, гипотетическими свойствами, позволяя получить решение задачи в конечном виде. Например, в различных областях знаний (физика, теплопередача) широко применяются понятия абсолютно черного и абсолютно белого тел, абсолютно твердого тела, идеального газа и идеальной жидкости.

Идеализация достигается многоступенчатым абстрагированием, мысленным переходом к предельному случаю в развитии какого-либо свойства (абсолютно черное тело) или простым абстрагированием (несжимаемая жидкость). Естественно, любая идеализация правомерна лишь в определенных пределах.

Формализация – это метод изучения различных объектов, при котором основные закономерности явлений и процессов отображаются в знаковой форме, с помощью формул или специальных символов. Формализация обеспечивает обобщенность подхода к решению различных задач, позволяет формировать знакомые модели предметов и явлений, устанавливать закономерности между изучаемыми фактами. Символика искусственных языков придает краткость и четкость фиксации значений и не допускается двусмысленных толкований, сто невозможно в обычном языке.

Гипотеза – научно обоснованная система умозаключений, посредством которой на основе ряда фактов делается вывод о существовании объекта, связи или причины явления. Гипотеза является формой перехода от фактов к законам, переплетением достоверного, принципиально проверяемого, но недоступного проверке опыта прошлого и представлении о будущем, уже используемого и лишь потенциально возможного [8].

В своем развитии гипотеза проходит три основные стадии. На этапе эмпирического познания происходит накопление фактического материала и высказывание на его основе некоторых предложений. Далее из сделанных предложений развертывается предположительная теория – формируется гипотеза. На заключительном этапе осуществляется проверка гипотезы, ее уточнение. Таким образом, основу превращения гипотезы в научную теорию составляет практика.

Различают обычные и математические гипотезы. В обычной гипотезе делается предположение о физических свойствах объекта и затем производится его математическое описание. Примером такой гипотезы является закон Фурье – основной закон теплопроводности. Изучая процессы теплопроводности, Ж. Фурье первым предположил, что тепловой поток в любой точке пространства пропорционален градиенту температуры в этой же точке. В математической гипотезе сначала создается толкование полученных результатов. Для объяснения отдельных фактов выдвигаются рабочие гипотезы.

Теория представляет собой наиболее высокую форму обобщения и систематизации знаний. Она описывает, объясняет и предсказывает совокупность явлений в некоторой области действительности и сводит открытые в этой области законы к единому объединяющему началу. Создание теории основывается на результатах, полученных на эмпирическом уровне исследования. Затем эти результаты на теоретическом уровне исследования упорядочиваются, приводятся в стройную систему, объединенную общей идеей, уточняются на основе вводимых в теорию абстракций, идеализаций и принципов. В дальнейшем с использованием этих результатов выдвигается гипотеза, которая после успешной проверки практикой становится научной теорией. Таким образом, в отличие от гипотезы теория имеет объективное обоснование.

К новым теориям предъявляется несколько основных требований. Научная теория должна быть адекватной описываемому объекту или явлению, т.е. должна правильно их воспроизводить, что позволяет в определенных пределах заменить экспериментальные исследования теоретическими. Теория должна удовлетворять требованию полноты описания некоторой области действительности, объяснять взаимосвязи между различными компонентами системы; в ней должны существовать связи между различными положениями, обеспечивающие переход от одних утверждений к другим. Теория должна соответствовать эмпирическим данным. В противном случае она должна быть усовершенствована или отвергнута. Теория должна обладать эвристичностью, конструктивностью и простотой.

2.4 Методы теоретического и эмпирического уровней исследования


На теоретическом и эмпирическом уровнях исследования используется анализ, синтез, индукция, дедукция, аналогия, моделирование и абстрагирование.

Анализ – метод познания, заключающийся в мысленном расчленении предмета исследования или явления на составные более простые части и выделении его отдельных свойств и связей. Однако анализ – не конечная цель исследования. Понимание внутренней структуры объекта, характера его функционирования и закономерностей развития достигается с помощью синтеза явления.

Синтез – метод познания, состоящий в мысленном соединении связей отдельных частей сложно явления и познания целого в его единстве. Синтез дополняет анализ и находится с ним в неразрывном единстве. Без изучения частей нельзя познать целое, без изучения целого с помощью синтеза нельзя до конца понять функции частей в составе целого. Именно поэтому диалектический материализм подчеркивает единство и неразрывную связь методов анализа и синтеза.

Индукция представляет собой метод перехода от знания отдельных фактов к знанию общего, к эмпирическому обобщению и установлению общего положения, отражающего закон или другую существенную связь. При индуктивном методе исследования общее знание предмета исследования создается на основе исследования предметов определенного класса, нахождения в них общих существенных признаков, что служит основой для получения сведений об общем признаке, характером для данного класса предметов.

Дедукция – метод перехода от общих положений к частным, получение из известных истин новых истин с использованием законов и правил логики. Важным правилом дедукции является следующее: «Если из высказывания А следует высказывание В и высказывание А истинно, то высказывание В также истинно» [8]; при этом заключение об истинности В следует с необходимостью.

Аналогия – метод научного исследования, когда знания о неизвестных предметах и явлениях достигаются на основе сравнения с общими признаками предметов и явлений, которые исследователю известны.

Моделирование – метод научного познания, заключающийся в замене при исследовании изучаемого предмета или явления специальной моделью, воспроизводящей главные особенности оригинала, и ее последующем исследовании. Таким образом, при моделировании эксперимент проводят на модели, а результаты исследования с помощью специальных методов распространяют на оригинал.

Абстрагирование – метод научного познания, заключающийся в мысленном отвлечении от ряда свойств, связей, отношений предметов и выделении нескольких интересующих исследователя свойств или признаков. Результат абстрагирования называют абстракцией.


2.5 Основные этапы научного исследования


Научные исследования направлены на решение различных научных и практических задач; в теплоэнергетике это чаще всего: исследование рабочих процессов энергетических машин и установок (газодинамика, теплообмен, горение, термодинамика и т.д.), повышение их производительности, разработка принципов работы новых машин, перспективных преобразований энергии.

В общем случае, рассматривая научно-исследовательскую работу, можно выделить фундаментальные и прикладные исследования, а также опытно-конструкторские разработки. Последние направлены на создание конкретных образцов техники, разработку новых технологических процессов и имеют специфические особенности.

Рассмотрим основные этапы выполнения фундаментальных и прикладных научных исследований, которые имеют общие особенности (рис. 2.1.). Потребности науки и практики приводят к постановке определенных проблем в соответствующих областях знаний и отраслях производства, которые должны быть решены в процессе научного исследования.

Первым этапом научного исследования является подробный анализ современного состояния рассматриваемой проблемы. Он выполняется на основе информационного поиска с широким применением ЭВМ.

В результате анализа состояния проблемы составляются обзоры, рефераты и экспресс - информации, делается классификация основных направлений и ставятся конкретные задачи исследования. Далее осуществляется выбор метода исследования с использованием определенных критериев, составляется план – график выполнения работ, определяется ожидаемый экономический эффект.

Второй этап научного исследования сводится к выполнению поставленных на первом этапе задач. Чаще всего в фундаментальных и прикладных исследованиях используются математическое или физическое моделирование, а также сочетание этих методов.

Математическое моделирование включает в себя несколько этапов. Это составление математической модели исследуемого процесса на основе имеющихся сведений или использование готовой модели с правильным учетом основных и второстепенных факторов, что во многих случаях позволяет упростить составляемую модель. При этом для удобства решения и представления полученных результатов математическое описание явления выполняется в безразмерных единицах на основе теории подобия.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.