скачать рефераты

МЕНЮ


Тепловая защита зданий


В данном случае суммирование проводится по тем периодам, когда происходит конденсация влаги в конструкции.

При нарушении обоих условий, проверяемых в п.3.7 и п.3.8, сопротивление пароизоляции ΔRvp определяется дважды. Из двух величин Δ R vp принимается большая.

В качестве пароизоляции употребляются тонкие листовые и рулонные материалы, обладающие малой паропроницаемостью. Дополнительная пароизоляция выбирается по таблице приложения Г.

Следует изобразить эскиз запроектированной ограждающей конструкции с устройством слоя пароизоляции.

Предельно допустимые значения коэффициента Dwav

Материал ограждающей конструкции

Предельно допустимое приращение расчетного массового отношения влаги в материале Dwav, %

1. Кладка из глиняного кирпича и керамических блоков

1,5

2. Кладка из силикатного кирпича

2,0

3. Легкие бетоны на пористых заполнителях (керамзитобетон, шугизитобетон, перлитобетон, шлакопемзобетон)

5

4. Ячеистые бетоны (газобетон, пенобетон, газосиликат и др.)

6

5. Пеногазостекло

1,5

6. Фибролит и арболит цементные

7,5

7. Минераловатные плиты и маты

3

8. Пенополистирол и пенополиуретан

25

9. Фенольно-резольный пенопласт

50

10. Теплоизоляционные засыпки из керамзита, шунгизита, шлака

3

11. Тяжелый бетон, цементно-песчаный раствор

2


4. Оценка влажностного состояния ограждающей конструкции по методике СНиП 23-02-2003


Для оценки выполнения требований по защите наружной ограждающей конструкции от переувлажнения следует определить сопротивление паропроницанию ограждающей конструкции и проверить его соответствие требованиям СНиП 23-02. В случае несоблюдения норм по результатам расчета выбрать дополнительный слой пароизоляции.


4.1 Выбор расчетных параметров наружного и внутреннего воздуха


Перед расчетом для заданного района строительства необходимо определить:

- t ext1, t ext2, t ext3 – средние температуры наружного воздуха за зимний, летний и весенне-осенний периоды года;

- eext1, eext2, eext3средние значения парциального давления водяного пара наружного воздуха за эти же периоды соответственно;

- z1, z2, z3 – продолжительность зимнего, летнего и весенне-осеннего периодов в месяцах.

Определение этих параметров проводится согласно п.3.1.

Таблицу 3.1 следует дополнить строкой для периода с отрицательными среднемесячными температурами наружного воздуха (t ext < 0), используя данные из табл. А.2 Приложения А. Определяются средние значения температуры t ext0 и парциального давления водяного пара eext0 наружного воздуха за этот период.

Среднее за год значение парциального давления водяного пара наружного воздуха eext рассчитывается по формуле

 

eext = ( eext1· z1 + eext2· z2+ eext3· z3) (4.1)

Параметры микроклимата помещения tint и eint принимаются согласно заданию, табл.1.2 и п.3.2.


4.2 Определение положения плоскости возможной конденсации влаги в ограждающей конструкции


Согласно СНиП 23-02 в многослойной конструкции плоскость возможной конденсации совпадает с наружной поверхностью слоя утеплителя; а в однослойной ограждающей конструкции – находится на расстоянии, равном 2/3 толщины от ее внутренней поверхности.


4.3 Определение значений температур в плоскости конденсации


Значения температур в плоскости возможной конденсации по периодам года ti (i = 1, 2, 3, 0) рассчитываются по формуле

 

ti = tint - ( tint - text i ) · (1/aint + ∑R) / Ro , (4.2)


где text i - расчетная температура наружного воздуха i-го периода;

1/aint – термическое сопротивление внутреннего пограничного слоя воздуха;

R - термическое сопротивление части ограждения в пределах от внутренней поверхности до плоскости возможной конденсации;

Ro сопротивление теплопередаче ограждающей конструкции.

4.4 Определение среднего за год значения парциального давления насыщенного водяного пара в плоскости конденсации


Принимая температуры в плоскости конденсации ti (i = 1, 2, 3, 0) за точку росы, по табл. В.1 и В.2 Приложения В находят парциальные давления насыщенного водяного пара в плоскости конденсации: Е1, Е2, Е3 и Е0.

Среднее за годовой период парциальное давление насыщенного водяного пара в плоскости возможной конденсации вычисляется по формуле

 

Е = ( Е1· z1 + Е2· z2+ Е3 · z3) . (4.3)

4.5 Определение сопротивлений паропроницанию частей ограждающей конструкции до и после плоскости конденсации


Сопротивления паропроницанию отдельных слоев конструкции Rvp определяются в соответствии с п.3.4 по формуле (3.2).

Вычисляются как суммы соответствующих значений Rvp:

R ivp - сопротивление паропроницанию части конструкции от внутренней поверхности до плоскости конденсации;

Rеvp - сопротивление паропроницанию от плоскости конденсации до наружной поверхности.


4.6 Определение требуемого сопротивления паропроницанию R reqvp1 из условия недопустимости накопления влаги в ограждающей конструкции за годовой период эксплуатации


Нормируемое сопротивление паропроницанию R reqvp1 (из условия недопустимости накопления влаги в конструкции за год) рассчитывается по формуле

, (4.4)


где eint и eext найдены в п.4.1; Е рассчитывается в п.4.4.

Величина R reqvp1 может получиться отрицательной, если Е > eint и Е > eext. Практически данный случай означает, что влаги в конструкции накапливается мало, в теплый период она быстро испаряется, и большую часть летнего периода конструкция находится в воздушно-сухом состоянии.


4.7 Расчет требуемого сопротивления паропроницанию R reqvp2 из условия ограничения влаги в ограждающей конструкции за период с отрицательными среднемесячными температурами


Нормируемое сопротивление паропроницанию R reqvp2 из условия ограничения влаги в конструкции за период с отрицательными среднемесячными температурами (период влагонакопления) определяется по формуле


. (4.5)


В этом выражении eint и eext 0 найдены в п.4.1; Е0 - в п.4.4;

z0 – продолжительность периода влагонакопления, сут, принимаемая равной продолжительности периода с отрицательными среднемесячными температурами (табл.А.1 Приложения А и СНиП 23-01-99);

ρ и δ – плотность и толщина теплоизоляционного слоя;

Δwav – предельно допустимое приращение расчетного массового отношения влаги в материале увлажняемого слоя, %, за период влагонакопления, принимаемое по таблице 3.4;

, (4.6)


где Rеvp рассчитывается в п.4.5.


4.8 Проверка соответствия сопротивления паропроницанию ограждающей конструкции требованиям СНиП 23-02


Согласно нормам сопротивление паропроницанию части ограждающей конструкции от внутренней поверхности до плоскости возможной конденсации R ivp должно быть не менее наибольшего из нормируемых сопротивлений паропроницанию


(R reqvp1 , R reqvp2).


Из значений R reqvp1 и R reqvp2 , определяемых в п.4.6 и 4.7, выбирается наибольшее; обозначим его R reqvp. Оно сопоставляется с расчетным значением R ivp, найденным в п.4.5.

Если R ivp R reqvp , ограждающая конструкция удовлетворяет требованиям СНиП 23-02 в отношении сопротивления паропроницанию.

Если R ivp < R reqvp , то требуется дополнительный слой пароизоляции, необходимое сопротивление паропроницанию которого рассчитывается как

 

ΔRvp = R reqvp - R ivp (4.7)


Слой пароизоляции выбирается по табл. Приложения Г. Следует изобразить эскиз запроектированной ограждающей конструкции с устройством слоя пароизоляции.

5. Оценка требуемого уровня тепловой защиты здания по нормируемому удельному расходу тепловой энергии на отопление зданий


Как отмечалось во введении, при выборе требований показателя тепловой защиты «в» нормируется величина удельного расхода тепловой энергии на отопление. Это комплексная величина, которая учитывает энергосбережение от использования архитектурных, строительных, теплотехнических и инженерных решений, направленных на экономию энергетических ресурсов, и поэтому возможно при необходимости в каждом конкретном случае установить меньшие, чем по показателям «а», нормируемые сопротивления теплопередаче для отдельных видов ограждающих конструкций. Удельный расход тепловой энергии зависит от теплозащитных свойств ограждающих конструкций, объемно-планировочных решений здания, тепловыделений и количества солнечной энергии, поступающих в помещения здания, эффективности инженерных систем поддержания требуемого микроклимата помещений и систем теплоснабжения.

Удельный расход тепловой энергии на отопление зданий , кДж/(м2·°С·сут) или [кДж/(м3·°С·сут)], определяется по формуле


или

, (5.1)


где - расход тепловой энергии на отопление здания в течение отопительного периода, МДж;

- отапливаемая площадь квартир или полезная площадь помещений, м2;

- отапливаемый объем здания, м3;

D – градусо-сутки отопительного периода, °С · сут (1.1).

Удельный расход тепловой энергии на отопление зданий должен быть меньше или равен нормируемому значению  

 

 . (5.2)


5.1 Определение отапливаемых площадей и объемов здания


Этот пункт выполняется в разделе дипломного проекта для жилых и общественных зданий.

1.Отапливаемую площадь здания следует определять как площадь этажей (в том числе и мансардного, отапливаемого цокольного и подвального) здания, измеряемую в пределах внутренних поверхностей наружных стен, включая площадь, занимаемую перегородками и внутренними стенами. При этом площадь лестничных клеток и лифтовых шахт включается в площадь этажа.

В отапливаемую площадь здания не включаются площади теплых чердаков и подвалов, неотапливаемых технических этажей, подвала (подполья), холодных неотапливаемых веранд, неотапливаемых лестничных клеток, а также холодного чердака или его части, не занятой под мансарду.

2. При определении площади мансардного этажа учитывается площадь с высотой до наклонного потолка 1,2 м при наклоне 30° к горизонту; 0,8 м — при 45° — 60°; при 60° и более — площадь измеряется до плинтуса.

3. Площадь жилых помещений здания подсчитывается как сумма площадей всех общих комнат (гостиных) и спален.

4. Отапливаемый объем здания определяется как произведение отапливаемой площади этажа на внутреннюю высоту, измеряемую от поверхности пола первого этажа до поверхности потолка последнего этажа.

При сложных формах внутреннего объема здания отапливаемый объем определяется как объем пространства, ограниченного внутренними поверхностями наружных ограждений (стен, покрытия или чердачного перекрытия, цокольного перекрытия).

5. Площадь наружных ограждающих конструкций определяется по внутренним размерам здания. Общая площадь наружных стен (с учетом оконных и дверных проемов) определяется как произведение периметра наружных стен по внутренней поверхности на внутреннюю высоту здания, измеряемую от поверхности пола первого этажа до поверхности потолка последнего этажа с учетом площади оконных и дверных откосов глубиной от внутренней поверхности стены до внутренней поверхности оконного или дверного блока. Суммарная площадь окон определяется по размерам проемов в свету. Площадь наружных стен (непрозрачной части) определяется как разность общей площади наружных стен и площади окон и наружных дверей.

6. Площадь горизонтальных наружных ограждений (покрытия, чердачного и цокольного перекрытия) определяется как площадь этажа здания (в пределах внутренних поверхностей наружных стен).

При наклонных поверхностях потолков последнего этажа площадь покрытия, чердачного перекрытия определяется как площадь внутренней поверхности потолка.

Расчет площадей и объемов объемно-планировочного решения здания выполняют по рабочим чертежам архитектурно-строительной части проекта. В результате получают следующие основные объемы и площади:

- отапливаемый объем Vh ,м3;

- отапливаемая площадь (для жилых зданий — общая площадь квартир) Ah ,м2;

- общая площадь наружных ограждающих конструкций здания , м2.

5.2 Определение нормируемого значения удельного расхода тепловой энергии на отопление здания


Нормируемое значение удельного расхода тепловой энергии на отопление жилого или общественного здания  определяют по табл. 5.1 и 5.2.

Нормируемый удельный расход тепловой энергии на отоплениежилых домов одноквартирных отдельно стоящих и блокированных, кДж/(м2·°С·сут)


Таблица 5.1


Отапливаемая площадь домов, м2

С числом этажей

1

2

3

4

60 и менее

140

100

125

135

150

110

120

130

250

100

105

110

115

400

90

95

100

600

80

85

90

1000 и более

70

75

80

Примечание — При промежуточных значениях отапливаемой площади дома в интервале 60—1000 м2 значения  должны определяться по линейной интерполяции.


Нормируемый удельный расход тепловой энергии на отопление зданий , кДж/(м2·°С·сут) или [кДж/(м3·°С·сут)]


Таблица 5.2

Типы зданий

Этажность зданий

1-3

4, 5

6,7

8,9

10,

11

12 и выше

1. Жилые, гостиницы, общежития

По таблице 5.1

85[31]

для 4-этажных одноквартирных и блокированных домов — по табл. 5.1

80

[29]

76

[27,5]

72

[26]

70

[25]

2. Общественные, кроме перечисленных в поз. 3, 4 и 5 таблицы

[42]; [38]; [36] соответственно нарастанию этажности

[32]

[31]

[29,5]

[28]

3. Поликлиники и лечебные учреждения, дома-интернаты

[34]; [33]; [32] соответственно нарастанию этажности

[31]

[30]

[29]

[28]

4. Дошкольные учреждения

[45]

5. Сервисного обслуживания

[23]; [22]; [21] соответственно нарастанию этажности

[20]

[20]

6.Администра-тивного назначения (офисы)

[36]; [34]; [33] соответственно нарастанию этажности

[27]

[24]

[22]

[20]

[20]

Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.