скачать рефераты

МЕНЮ


Конструктивная схема одноэтажного промышленного здания



где е - эксцентриситет, равный приближенно:


е=0.5*(1000-500)=250мм

Мg=286,56*0,25=71,64кН*м


Нормальная сила в ригеле рамы от постоянной нагрузки (то есть лишнее неизвестное) (кН):


Xg= 3*71,64*(1-0,3552)/2*11,2(1+0,3553*9)=5,98кН

где ;


 Рекомендуется принимать n= 8…12

В стойках будут действовать изгибающие моменты (рис.17 ):

в сечении 1-1 =71,64-5,98*11,2=-4,7кНм


в сечении 2-2 =71,64-5,98*3,97=47,9кНм

в сечении 3-3 =-5,98*3,97=-23,74кНм

Нормальная сила в стойках рамы (кН) =286,56кН


Поперечная сила в левой стойке =5,98кН


Рис. 17. Эпюра усилий в раме от постоянной нагрузки


Усилия в стойках рамы от снеговой нагрузки

Значения усилий в стойках рамы от снеговой нагрузки определяются путем умножения соответствующих усилий от постоянной нагрузки на переходной коэффициент К= Vp/ Vg=50,4 /286,56 =0,18

Усилия в стойках рамы от вертикальных крановых нагрузок

От действия сил вертикального давления кранов на уровне консолей в стойках рамы возникают моменты


Mmax= Dmax·ec

ec=0, 5 м

Mmax= 717,36 ·0,5=358,68 кН·м

Mmin= Dmin·ec

Mmin=223,68 ·0,5=111,84 кН·мСхема к определению ес

,

где


Изгибающие моменты в расчетных сечениях левой стойки


Mс 1-1= Xсl- Mmax =19,6·11,2-358,68 = -139,16 кН·м

Mс 2-2= Xсl2- Mmax=19,6·3,97-358,68 = -280,87 кН·м

Mс 3-3= Xсl2 =19,6·3,97=77,8кН·м


Изгибающие моменты в расчетных сечениях правой стойки


Mс ´1-1= Xсl- Mmin=19,6·11,2-111,84=107,7 кН·м

Mс ´2-2= Xсl2- Mmin=19,6·3,97-111,84= -34кН·м

Mс ´3-3= Xсl2 =19,6·3,97=77,8кН·м


Нормальная сила в левой и правой стойках (кН):


N= Dmax=717,36 кН

N’= Dmin=223,68 кН


Поперечные сили в левой и правой стойках (кН):

Q= -19,6 кН

Q’= 19,6 кН

 

Усилия в стойках рамы от горизонтальных крановых нагрузок

Усилие Х в ригеле (кН):



Изгибающие моменты в расчетных сечениях левой стойки:


MТ 1-1=±[ 23,6*7,23-4,1*11,2] =±124,7 кН·м

MТ 2-2= MТ 3-3=±4,1·3,97=±16,3Н·м


Изгибающие моменты в расчетных сечениях правой стойки:


MТ 1-1=±4,1·11,2=±45,92 кН·м

MТ 2-2= MТ 3-3=±4,1·3,97=±16,3 Н·м


Поперечная сила в нижней части левой стойки Q=±( Xс-Tc)= ±4 кН

в правой стойке Q=±XТ=±4,1 кН

Эпюры моментов в раме от горизонтальной крановой нагрузки

Усилия в стойках рамы от ветровой нагрузки

Нормальная сила в ригеле (кН) от положительного ветрового давления:

Усилия в левой колонне при ветре слева

Изгибающие моменты в расчетных сечениях левой стойки:


Mw1-1= (12,1-17,5) ·11,2-(3,2·11,22/2)=-261 кН·м


Mw2-2= Mw3-3=(12,1-17,5) ·3,97-(3,2·3,972/2) = - 46,7 кН·м

Нормальная сила:Nw=0

Поперечная сила:

-в верхней точке колонны

Qw=17,5-12,1=5,4 кН

-в заделке колонны

Qw(1-1) =17,5-12,1+3,2*11,2=41,24 кН


Эпюры усилий в раме от ветровой нагрузки (ветер слева)

Эпюры усилий в раме от ветровой нагрузки (ветер справа)


Усилия в правой колонне при ветре слева

Изгибающие моменты в расчетных сечениях:


Mw1-1= 12,1·11,2+(2,4·11,22/2)=286кН·м

Mw2-2= Mw3-3=12,1·3,97+(2,4·3,972/2)=67 кН·м


Нормальная сила :

Поперечная сила:

в верхней точке колонны Qw=Xw

Qw=12,1кН

в заделке колонны Q¢w(1-1)=Xw+q¢wl

Q¢w(1-1)=12,1+2,4·11,2=38,98 кН

 

Эпюры усилий в раме от ветровой нагрузки (ветер слева)

При ветре справа колонны как бы меняются местами, при этом изменяется знак поперечной силы Q.

Таким образом:

Усилия в левой колонне при ветре справа:

Изгибающие моменты в расчетных сечениях:


Mw1-1= 12,1·11,2+(2,4·11,22/2)=286кН·м


Mw2-2= Mw3-3=12,1·3,97+(2,4·3,972/2)=67 кН·м


Нормальная сила :

Поперечная сила:

в верхней точке колонны Qw=-Xw

Qw=-12,1кН

в заделке колонны Q¢w(1-1)=-(Xw+q¢wl)

Q¢w(1-1)=-(12,1+2,4·11,2)=-39 кН

Усилия в правой колонне при ветре справа

Изгибающие моменты в расчетных сечениях левой стойки:


Mw1-1= (12,1-17,5) ·11,2-(3,2·11,22/2)=-261,2 кН·м

Mw2-2= Mw3-3=(12,1-17,5) ·3,97-(3,2·3,972/2) = - 46,7 кН·м


Нормальная сила:Nw=0

Поперечная сила:

-в верхней точке колонны

Qw=12,1кН

-в заделке колонны

Qw(1-1) =12,1+2,4*11,2=39 кН


Полученные результаты заносим в сводную таблицу.




Сводная таблица усилий в левой стойке рамы

Ном.

загр.


Вид

загружения

Схемы рамы и эпюр М






Коэф.

соче-

таний

Часть стойки

нижняя

верхняя

Сечения

1-1

2-2

3-3

М

кН·м

N

кН

Q

кН

М

кН·м

N

кН

М

кН·м

N

кН

1

Постоянная нагрузка, собственный вес ригеля

1,0

-4,7

286,6

5,98

47,9

286,6

-23,7

286,6

2

Снеговая нагрузка



1,0



-0,9


51,6

1,1

8,6

51,6

-4,3

51,6


3

Крановые моменты

(тележка слева)

1,0



-139,2


717,4


-19,6



-280,9



717,4


77,8


717,4


4

Крановые моменты

(тележка справа)

1,0



107,7


223,7


19,6


-34


223,7


77,8


223,7




5

Поперечное торможение кранов (сила приложена к левой стойке)

1,0




±

124,7





±4






±

16,3








6

Поперечное торможение кранов (сила приложена к правой стойке)

1,0




±45,9






±4,1





±

16,3









7

Ветровая нагрузка

(ветер слева)


1,0


-2,61




41,2


-46,7






8

Ветровая нагрузка

(ветер справа)


1,0


261,2



39


-46,7







6.Расчет колонны

Определение расчетных усилий.

Расчетные усилия для верхней (сечение 3-3) и нижней (1-1) частей колонны принимаем по таблице

М1=392 кН·м

N1=1279 кН

М3=128 кН·м

N3= 1279 кН

Определение расчетных длин.

l1 =7230мм– длина подкрановой части колонны;

l2 =3970мм– длина надкрановой части колонны.

Расчетные длины частей колонны в плоскости рамы


lx2ef=μ2l2=3·3,97=11,9м

lx1ef=μ1l1=2,5·7,23=18,1м


Расчетные длины частей колонны из плоскости рамы


lу2ef=l2-hg=3,97-0,6=3,37м

ly1ef=l1=7,23м


Расчет верхней части колонны.

Предварительный подбор сечения.

Требуемая площадь поперечного сечения (см2)


Атр>Nγn(1,25+2,8ex/h2)/Ryγc

где ех=M/N =400/1300=0,31м

Атр>1300·1(1,25+2,8·0,31/0,5)/33·1=118 см2

Атр ≥ 118 см2


Толщину стенки принимаем tw=10мм

Площадь поперечного сечения стенки Aw=tw·hw

где hw – высота стенки: hw=h2-2tf=500-2·20=460мм

tf- толщина пояса колонны: tf=10…20мм

Aw=tw·hw=1·46=46см2

По конструктивным требованиям принимаем ширину полки

Bf= 180мм=18 см

Аf=2 Bf tf=2·18·2=72см2

 

Рис. Вычисление геометрических характеристик сечения


Фактическая площадь сечения (см2)


А2=hw·tw+2·Bf·tf

А2=46·1+2·18·2,0=118 cм2

 

Моменты инерции (см4)


Iy=2·tf·Bf3·/12=2·2,0·183·/12=1944см4

Ix=tw·hw3/12+2·Bf·tf·(h2/2+tf/2)2= 1·463/12+2·18·2,0·(50/2+2,0/2)2=56783см4

 

Момент сопротивления (см3)

Wx=2· Ix/h2=2· 56783/50=2271 см3

Ядровое расстояние (см) rx=Wx/A2=2271/118=19,3 см

Радиусы инерции (см)


ix=√(Ix/A2)=√(56783/118)=21,9 cм

iу=√(Iу/A2)=√(1944/118)=4,1 cм


Проверка устойчивости верхней части колонны в плоскости действия изгибающего момента.


Гибкость верхней части колонны в плоскости рамы


λх= lx2ef/ ix=1120/21,9=51,1


Условная гибкость λх= λх√(Ry/E)=51,1√(33/20600)=2,1

Оптимальный эксцентриситет m=ex/rx=31/19,3 =1,61

Проверка устойчивости осуществляется по формуле


N/φе·A2<Ryγc/γn

1300/0,435·118<33·1,0/1,0

25<33


Условие выполняется

Проверка устойчивости верхней части колонны из плоскости действия изгибающего момента.

Наибольшее значение изгибающего момента в пределах средней трети высоты верхней части колонны

M´x=2/3 Mx, где Мх- расчетный изгибающий момент в сечении 3-3

M´x=85,3 кН·м

Относительный эксцентриситет mx= M´x/N*rx=85,3/1300·0,193=0,34

Величина коэффициента с вычисляется по формуле с=β/(1+α·mx)

с=1,0/(1+0,8· 0,34)=0,79

Гибкость верхней части колонны в плоскости рамы

λу= lу2ef/ iу=337/4,1=82

Проверка устойчивости осуществляется по формуле

N/с·φу·A2<Ryγc/γn,

где φу – коэффициент продольного изгиба относительно оси Y-Y

1300/0,66·118·0,79=21,1<33·1,0/1,0=33

21,1<33

Проверка устойчивости поясов верхней части колонны

Отношение расчетной ширины свеса поясного листа Bef к его толщине tf не должно превышать для двутаврового сечения величины

Bef/tef=(0,36+0,1 λx)√(E/Ry)= (0,36+0,1·2,1)√(20600/33)=14


Ширина свеса Bef=(Bf-tw)/2=(18-1)/2=8,5 см


46/1=46<57,5


Значит, укреплять стенку поперечными ребрами жёсткости не надо.

Расчет нижней части колонны

Предварительное определение усилий в ветвях

Подкрановая ветвь колонки принимается из прокатного двутавра, наружная - из сварного швеллера.

Ориентировочное положение центра тяжести поперечного сечения нижней части колонны



y1=392·0,98/(392+392)=49 см

Где M1, M2 - абсолютные величины расчетных изгибающих моментов, догружающих подкрановую и наружную ветви;

ho=h-zo=100-2=98cм ; h=100см, zo=2…3 см

y2=ho-y1=98-49=49 см

Нормальные силы соответственно в подкрановой и наружной ветвях

Nb1=N1y2/ho+│M1│/ho= 1300·49/98+392/0,98=650кН

Nb2=N2y1/ho+│M2│/ho=1300·49/98+392/0,98=650 кН


Поперечное сечение нижней части колонны

Подбор сечений ветвей

Требуемая площадь поперечного сечения подкрановой ветви

Атр.1= Nb1γn/Ryγcφ=650·1/33·1·0,75=26,3 см2

где φ- коэффициент продольного изгиба, принимаемый в пределах 0,7…0,8

Высота двутаврового сечения для обеспечения устойчивости ветви из плоскости рамы должна составлять b>l1/30=241 мм

Принимаем двутавр №30 с Аb1=46,5 см2

Требуемая площадь поперечного сечения наружной ветви

Атр.2= Nb2γn/Ryγcφ=650·1/33·1·0,75=27 см2

Принимаем швеллер с hw= 320мм, tw= 8мм Bf = 75 мм tf =10мм

Аb2=32*0,8+7,5*1*2=40,6см2

Уточнение усилий в ветвях

Для уточнения нормальных сил в ветвях необходимо найти фактические значения zo, y1, y2

 

zo=(hwtw2/2+2bftf(bf/2+tw))/(hwtw+2bftf) zo=1,9см

ho=h-zo=100-1,9=98,1cм ;

y1=Аb2ho/(Ab1+Ab2)=45,7 см

y2=ho-y1=98,1-45,7=52,4 см


Вычисление геометрических характеристик сечения наружной ветви

Момент инерции относительно осей y-y и x2- x2;


;

Iy=0,8·323/12+2·7,5·1(30-1,0)2 /4=5338,3 см4


где B- расстояние между наружными гранями полок сварного швеллера

Ix2= 0,8·32(3,7-0,4)2+2·1·7,53/12+2·1·7,5(3,75+0,8-3,7)2=360 см4

Радиусы инерции относительно оси Y-Y и Х2 - Х2


iy=√(Iy/Ab2)=11,5см

iх=√(Iх2/Ab2)=2,98см

 

Проверка устойчивости ветвей из плоскости рамы

- Подкрановой ветви относительно оси y-y



где iy - радиус инерции двутаврого сечения, определяемый по табличным данным ( ось y-y - см.рис.20).

λy1=723/11,5=63

- Проверка устойчивости подкрановой ветви:



где y -коэффициент продольного изгиба относительно оси y-y

σ=650/46,5=14<0,962*33*1/1=31,8

-Гибкость наружной ветви относительно оси y-y



где iy - радиус инерции швеллерного сечения.

λy2=723/11,5=63

Расчет базы колонны.

Площадь опорной плиты подкрановой ветви:



где - расчетное сопротивление бетона смятию

(рекомендуется принижать бетон класса B12,5, для которого Rb=7,5МПа=0,75 кН/см²

Атр.рl=650·1,0/1,2·0,75·1=722,2 см2

Больший размер опорной плиты в плане(рис. 25):



где B- высота двутаврого сечения ветви колонны;

c- свес плиты, принимаемый в пределах 40...60 мм.

Bpl=300+2·50=400мм

Меньший размер плиты:



L рl = 72222/400=180,56мм

Принимаем конструктивно Lрl=220мм

Толщину плиты примем 20мм. Высоту траверс можем принять равной 500мм

Подбор фундаментных болтов

Суммарное усилие в фундаментных болтах (в кН):



Nа=(392-1300*0,457)/0,963=210кН

Общая требуемая площадь фундаментных болтов:

 


где Rba- расчетное сопротивление фундаментных болтов(Rba=185 МПа = 18,5 кН/см², если болты выполняются из стали марки ВСтЗкп2 ).

Аb=210*1,0/18,5*1,0=11,4 см2


Обычно принимают 4 болта, тогда площадь сечения одного болта нетто:

Аbl =11,4/4=2,85см2


По сортаменту принимаем 4 болта диаметром 20 мм. Глубина заделки=800мм


Рис. 1- База колонны






















Схема к определении Na

 


Список используемой литературы


1.Васильев А.А. Металлические конструкции. –М.: Стройиздат,1979.

2.Сетков В.И., Сербин Е.П. Строительные конструкции: Расчет и проектирование. –М.: ИНФА-М, 2008.

3.Металлические конструкции в 3т. Т 1- Элементы конструкций/Горев В.В., Уваров Б.Ю., и др.-М.; Высшая школа.,2001.

4.Металлические конструкции в 3т. Т 2- Конструкции зданий/Горев В.В., Уваров Б.Ю., и др.-М.; Высшая школа.,2001.

5.Металлические конструкции. Под общ. ред. Л.Р. Маиляна. – Ростов н/Д:Феникс., 2005.

6.СниП 2.01.07-85*. Нагрузки и воздействия.- М.; Стройиздат,1998

7.СниП II-23-81* .Стальные конструкции.- М.; Стройиздат,1998

8.Справочник современного проектировщика. Под общ. ред. Л.Р. Маиляна. – Ростов н/Д:Феникс., 2005.


Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.