скачать рефераты

МЕНЮ


Проектирование металлической балочной конструкции


A = Aw + 2·Af ,

Aw = hef ·tw = 106.8·0.8 = 85.14 cм²,


тогда

А = 85.14 + 2•44.35 =174.14 cм²,

Iy = tw·hef3/12 + 2·( bf · tf3/12 + bf · tf ·(h/2 - tf /2)2) (3.2.12)

Iy = 0.8·106.83/12 + 2· ( 30· 1.63/12 + 30·1.6·(110/2 – 1.6 /2)2) = 363200 cм4,


тогда

 

Wy = Iy / (h/2), (3.2.13)

Wx = 363200·2/110 = 6604 cм³,

Wy = 6604 cм³ > Wтр = 6351 см³

Sy = bf · tf · h0/2 + (hef · tw/2·hef/4) (3.2.14)

Sy = 30·1.6·108.4/2 + (106.8·0.8/2·106.8/4) = 3742 cм³.


Прочность сечения проверяем, исходя, из предположения упругой работы стали:

 

 

 

σ = Mmax·γn / Wx £ Ry·γc, (3.2.15)


по СНиПу II-23-81*: Ry = 240 МПа,


σ = 1604.366·103·0.95/6604·10-6 = 230.8 МПа<240 МПа


Проверка по касательным напряжениям:

 

τ = Qmax·Sy·γn/Iy·tw £ Rs·γc (3.2.16)

τ = 629.163·103·0.95/363200·10-8·0.008 = 76.98 МПа

τ = 76.98 МПа < 139.2 МПа


Проверка прочности стенки на совместное действие σy и τ yz:

 

Öσy² + 3· τ yz² £ 1.15·Ry·γc , (3.2.17)

σy = Mmax·γn· hef / 2· Iy , (3.2.18)

σy = 1604.366·103·0.95·1.068 / 2·363200·10-8 = 224.1 МПа;

τyz = Qmax·γn / tw·hef (3.2.19)

τyz =629.163·103·0.95/0.008·1.068 =69.96 МПа;

Ö224.1² + 3·69.96² £ 1.15·240·1,

254.763 МПа < 276 МПа.


3.2.3 Изменение сечения главной балки



В однопролетных шарнирно опертых балках целесообразно изменять ее сечение в соответствии с эпюрой изгибающих моментов. Следуя рекомендациям, изменение сечения производим путем уменьшения bf, оставляя без изменения h, tf, tw.

Для этого ширину пояса bf1 в концевой части балки назначаем равной (0.5 – 0.75)•bf, принятой для сечения с расчетным моментом Мрасч. При этом, соблюдая условия:

 

bf1 ³ 0.1·h и bf1 ³ 160 мм (3.2.20)

bf1 = (0.5÷0.75) ·bf = 220 мм,

220 > 110 мм,

bf1 = 220 мм.

 

Для назначенной ширины пояса bf1 = 22 см, дополнительные условия выполняются.

После назначения bf1 находим геометрические характеристики Iy1, Wy1, Sy1.

Iy1=Iw+2· If1 = tw·hef3/12 + 2·( bf1· tf3/12 + bf1· tf ·(h/2 - tf /2)2)

Iy1= 0.8·106.83/12 + 2·( 22·1.63/12 + 22·1.6 ·(110/2 – 1.6 /2)2) =292700 cм4;

Wy1 = 2·Iy1/h = 292700·2/110 = 5321.82 cм3;

Sy1 = hef · tw /2·hef/4 + bf1 · tf · h0/2 = 106.2·0.8/2·106.2/4 + 22·1.6·108.4/2 = 3092 cм3;


Изгибающий момент, который может быть воспринят измененным сечением, определяется по формуле:

 

M1 = Wx1·Ry·γc, (3.2.21)


где γс = 1.

M1 = 5321.82·10-6·240·106·1 = 1224 кНм.

 

Далее находим расстояние от опоры балки до ординаты М1.


M1 - VA· x + 2·F· x713.052 = 0;


Решаем уравнение относительно x:


1224 – 629.163· x + 2·209.721· x – 713.052 = 0;

x = 2.436 м x = 2.4 м.


Стык поясов в балках относим от сечения с ординатой М1 в сторону опор на 300 мм.

x – 300 = 2.4 – 0.3 = 2.1 м. Принимаем: x = 2.1 м.


Изгибающий момент в полученном сечении, будет равен:

Mрасч = VA·2,1 - F· 1.25 = 629.163·2,1 – 209.721·1.25 = 1059 кНм.

В месте изменения сечения балки проводим проверки:

 

σ = Mрасч·γn / Wy1 £ Ry·γc, (3.2.22)

σ = 1059·103·0.95 / 5231.82·10-6 = 189 МПа < 240 МПа;

τ = Qрасч·Sy1·γn / Iy1·tw £ Rs·γc, (3.2.23)

Qрасч = VA - F = 629.163 –209.721 = 419.442 кН,

τ = 419.442·103·3092·10-6·0.95 / 292700·10-8·0.008 = 52.62 МПа < 139.2 МПа.


3.2.4    Проверка общей устойчивости и деформативности балок

f/l = Mmaxn·L / 9.6·EIy £ [f/L] = 1/211.667 (по СНиПу II-23-81*) (3.2.24)

Mmaxn =Mmax / k, (3.2.25)


где k = (p+q) р/(p+q) н, (3.2.26)

k = 18.95/15.92 = 1.19 > 1;

Mmaxn = 1604.366/1.19 = 1348.21 кНм;

f/l = 1348.21·103·10.2 / 9.6·2.06·105·106·363200·10-8 = 2.278·10-3 < 4.724·10-3

 

3.2.5    Проверка местной устойчивости балок


Стенки балок для обеспечения их местной устойчивости следует укреплять поперечными ребрами, поставленными на всю высоту стенки. Ребра жесткости нужны в том случае, если значение условной гибкости стенки:

 

λw = hef/tw·Ö Ry/E > 3.2, (3.2.27)


при отсутствии подвижной нагрузки

λw = 106.8/0.8·Ö 240/2.06·105= 4.557 > 3.2.


При этом расстояние между поперечными ребрами вдоль балки принимаем, а=1,7м, которое не должно превышать, а £ 2·hef. Поперечные ребра также устанавливаться в местах приложения неподвижных сосредоточенных нагрузок, от вспомогательных балок и на опорах.

Ширина выступающей части ребра:

 

bh ³ hef/30 + 40мм, (3.2.28)

bh ³ 1068/30 + 40 = 75.6 мм,


после округления до размера кратного 10 мм, получим bh = 100 мм.

Толщина ребра:

 

ts ³ 2·bh ·Ö Ry/E, (3.2.29)

ts = 2·100·Ö 240/2.06·105 = 6.827 мм,


принимаем по сортаменту ts = 7 мм.

Расчет на устойчивость стенки проверяем по формуле:

 

Ö(σ/σcr)² + (τ/τcr£ 1, (3.2.30)

σcr = Ccr·Ry/λw², (3.2.31)

Ccr = 35.5,

σcr = 35.5·240·106 / 4.557² = 410.281 МПа;

τcr = 10.3· (1 + (0.76/μ²))·Rs/λef², (3.2.32)

μ – отношение большей стороны отсека балки к меньшей, т.е.:

μ = a/hef = 1.7/1.068 = 1.59,

λef = (d/tw) ·ÖRy/E, (3.2.33)

d – меньшая из сторон отсека балки, т.е. hef = 106.8 cм;

λef = (106.8/0.8) ·Ö240/2.06·105 = 4.557,

τcr = 10.3·(1 + (0.76/1.59²))·0.58·240·106/4.557² = 89.799 МПа;

σ = (Мср·γn /Iy)·y, (3.2.34)

τ = Q·γn /(tw·hef), (3.2.35)

y = hef/2=106.8/2=53.4 см.


На устойчивость проверим 2-ой отсек:

Мср = 891.314 кНм,

Q = 419.442 кН,

σ = (891.314·103·0.95/292700·10-8)·0.534 = 154.5 МПа;

τ = 419.442·103· 0.95/(0.008·1.068) = 46.64 МПа;

Ö(154.5/410.281)² + (46.64/89.799)² = 0.642 £ 1;


На устойчивость проверим 1-ой отсек:

Мср = 267.395 кНм,

Q = 629.163 кН,

σ = (267.395·103·0.95/292700·10-8)·0.534 = 46.34 МПа;

τ = 629.163·103· 0.95/(0.008·1.068) = 69.96 МПа;

Ö(46.34/410.281)² + (69.96/89.799)² = 0.787 £ 1;


На устойчивость проверим 3-ой отсек:

Мср = 1426.103 кНм,

Q = 209.721 кН,

σ = (1426.103·103·0.95/363200·10-8)·0.534 = 199.2 МПа;

τ = 209.721·103· 0.95/(0.008·1.068) = 23.32 МПа;

Ö(199.2/410.281)² + (23.32/89.799)² = 0.551 £ 1;


На устойчивость проверим 4-ой отсек:

Мср = 1604.366 кНм,

Q = 0 кН,

σ = (1604.366·103·0.95/363200·10-8)·0.534 = 224.1 МПа;

τ = 0·103· 0.95/(0.008·1.068) = 0 МПа;

Ö(224.1/410.281)² + (0/89.799)² = 0.546 £ 1;


3.2.6    Расчет поясных швов, опорных частей балок, узлов сопряжений балок

Расчет поясных швов сводится к определению требуемого катета углового сварного шва kf. В балках, проектируемых, из одной марки стали, при статической нагрузке требуемый катет шва равен:

 

kf ³ (Qрасч·Sf)/(2·Iy·βf·Rwf·γwf·γc), (3.2.36)


где Sf – статический момент полки балки;

βf = 1.1 – коэффициент, для автоматической сварки стали с Ry до 580 МПа;

γwf = 1 – коэффициент условия работы шва;

Rwf = 180 МПа – расчетное сопротивление сварного углового шва условному срезу, γс = 1.

kf ³ (419.442·103·0.95·3092·10-6)/(2·292700·10-8·1.1·180·106·1·1) = 1.06 мм,



 Принимаем kf = 6 мм.

Участок стенки составной балки над опорой должен укрепляться опорным ребром жесткости и рассчитываться на продольный изгиб из плоскости как стойка высотой ls = h, нагруженная опорной реакцией Vr. В расчетное сечение включается, кроме опорных ребер и часть стенки.

Площадь опорного ребра определим из условия смятия торца по формуле:

 

As = bh·ts = Vr·γn /Rp, (3.2.37)

Rp = Run / γm по СНиПу II-23-81*: Run = 370 МПа, γm = 1.025,

Rp = 370/1.025 = 368.975 МПа,

As = 629.163·103·0.95/368.975·106 = 17.05 м2

 

Находим ts:

ts = As /bh=17.05/22 = 0.758 см ≈ 8 ммts = 12 мм.

 

Тогда

 

δ £ 1.5· ts = 1.5·12 = 18 мм.


Проверка устойчивости опорной стойки относительно оси x-x производится по формуле:

 

σ = Vr·γn /φ·A £ Ry·γc, (3.2.38)


где А – расчетная площадь стойки, равная:

 

A = bh·ts + 0.65·tw² ·ÖE/Ry, (3.2.39)

A = 22·1.2+ 0.65·0.8²·Ö2.06·105/240 = 39.188 см²;

φ – коэффициент продольного изгиба, определяемый по СНиПу II-23-81*, в зависимости от гибкости:

λ = lef/ix, lef = h = 110 см

ix = ÖIx/A,


где Ix – для расчетного сечения:

Ix = (ts·bh³)/12 + (0.65·tw·ÖE/Ry·tw³)/12 =

= (1.2·22³)/12 + (0.65·0.8·Ö2.06·105/240·0.8³)/12 = 1140 см4,


тогда:

ix = Ö1140/39.188 = 5.394 см, λ = 110/5.394 = 20.393,


принимаем: φ = 0,96,


σ = 629.163·103·0.95/0.96·39.188·10-4 = 158.9 МПа < 240 МПа.


Сопряжение вспомогательных балок с главными, по условиям задания рассчитываем для случая примыкания вспомогательной балки к поперечному ребру жесткости главной балки. Сопряжение производим на сварке.

Расчет сопряжения заключается в назначении требуемого катета шва kf. Длина шва , определяется высотой стенки вспомогательной балки = hef –1см, где hef = 0.85·h – высота стенки прокатной балки до закругления. При проектировании ребер главных и вспомогательных балок из одной стали катет шва, равен:

 

kf ³ V·γn /(βf ··Ry·γωf ·γc), (3.2.40)


где V – реакция вспомогательной балки;

hef = 0.85·30 = 25.5 см,

= 25.5 – 1 = 24.5 см,

kf ³ 99.867·103·0.95/(1.1·0.245·240·106·1·1) = 1.467 мм.


Принимаем kf = 6 мм.


4. Расчет и конструирование колонн


 

4.1                         Выбор расчетной схемы

 

Определение расчетной сжимающей силы на колонну производим суммированием опорных реакций главных балок:

 

N = 2·k·V, (4.1.1)


где k = 1.03 – 1.05 – коэффициент, учитывающий собственный вес колонны;

N = 2·(1.03–1.05)·629.163 = 1309 кН.


Условия опирания колонн на фундаменты и схема связей по колоннам определяется следующими требованиями. Необходимо обеспечить геометрическую неизменяемость сооружения в плоскости и из плоскости главных балок. Из плоскости главных балок геометрическая неизменяемость, как правило, обеспечивается установкой вертикальных связей по колоннам. В плоскости главных балок путем прикрепления их к неподвижным точкам (каркасу здания).

При этом необходимо стремиться к обеспечению равно устойчивости колонн: ix/iy = lef,x/lef,y. Это достигается путем рационального выбора типа сечения и правильной ориентации его в плане сооружения.

 

4.2                         Компоновка сечения колонны

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.