скачать рефераты

МЕНЮ


Проектирование здания детского сада на 320 мест


По таблице для значения jII = 12°, находим коэффициенты: Mq = 0,23; Мg = 1,94; Мc= 4,42;

Тогда расчетное сопротивление:


R = 1,2.1/1 (0,23.1. 8,5. 2,3+1,94. 6,6. 19,1+(1,94–1).2. 19,1+4,42.13) = 410кН/м2.         (27)


Среднее давление по подошве равно:

Р = 295,6 кПа < R =410 кПа – условие выполняется при расчете свайного фундамента по второй группе предельных состояний.


2.5 Выбор рационального типа фундамента


1 вариант – фундамент ленточный, монолитный b = 3,25 м;

2 вариант – фундамент ленточный, сборный b = 3,25 м;

3 вариант – фундамент свайный, из забивных железобетонных свай
сечением 30´30 и длиной 6 м.

Выбор производится на основе сравнения ТЭП основных видов работ, выполняемых при возведении фундамента на участке стены длиной 1 м.


Таблица 3 – ТЭП вариантов фундаментов

Наименование

работ

Ед.

изм.

Вариант

Объем

Стоимость, тг

Трудоёмкость, ч/дн

Ед.

Всего

Ед.

Всего

1

Разработка

грунта


м3

1

2

3

5,32

5,32

1,16

892,52

892,52

892,52

4748,1

4748,1

1035,32

0,26

0,26

0,26

1,38

1,38

0,30

2

Устройство

подготовки

под фундаменты

м3

1

2

3

0,43

0,43

-

2438

2438

-

1048,3

1048,3

-

0,13

0,13

-

0,06

0,06

-

3

Устройство

монолитного

железобетонного фундамента

м3

1

2

3

0,84

-

0,6

6000

-

6000

5040

-

3600

0,38

-

0,38

0,32

-

0,23

4

Устройство

сборных фундаментов

м3

1

2

3

-

0,84

-

-

9858

-

-

8280,7

-

-

0,42

-

-

0,35

-

5

Погружение

железобетонной сваи

шт.


1

2

3

-

-

1,08

-

-

18740

-

-

20240

-

-

0,98

-

-

1,06

6

Гидроизоляция

м2

1

2

3

6,4

6,4

5,6

127

127

127

814,1

814,1

712,32

0,047

0,047

0,047

0,3

0,3

0,26


Итого:


1

2

3



11650,5

14891,2

29300,5


4,21

4,90

4,59


Вывод:

Анализ ТЭП показал, что наиболее выгодным является вариант ленточного монолитного фундамента.

Но так как сборный фундамент по материальным и трудовым затратам отличается незначительно и является более индустриальным, то выбираем второй вариант.

По конструктивному решению фундаменты ленточные сборные под все стены здания, выполнены из сборных железобетонных блоков с подушкой.

Глубина заложения в связи с наличием техподполья 2,32 м, в помещении бассейна глубина заложения составляет 1,9 м.

Отметка подошвы фундамента – 3,250 м.

Толщина фундаментной стены – 600 мм.

Ширина подушки фундамента – 2000 мм.


2.6 Расчет осадки фундамента

Рm = 354 кН/м2; d =0,5 м; g0 = 19,5 кН/м3; b = 3,25 м.                         (28)


Решение. Определим дополнительное вертикальное давление

Р0 = Рm – γ0.d =354 – 19,5.0.5=344 кН/м2                                           (29)


Вычислим ординаты эпюры природного давления и вспомогательной эпюры. На поверхности пола подвала (глубина 1,2 м).

σzq=0; 0,2.σzq=0

В первом слое на уровне грунтовых вод (глубина 3 м).

σzq= 1,8*19,5 =35,1 кПа;

σzq.0,2 =7 кПа.

На контакте 1 и 2 слоев (глубина 3,5):

σzq2= 35,1+[(22.5–10)/(1+0.42)].0.9 = 39,5 кПа;

0,2.σzq2 = 7,9 кПа.

На контакте 2 и 3 слоев глубина 6 м

σzq2= 39,5+[(26.1–10)/(1+0.72)].2.5 = 63,3 кПа;

0,2.σzq2 = 12,7 кПа.

В 3 слое на глубине 10 м.

σzq3=63,3+[(27–10)/(1+1)].4=97,3 кПа;

0,2.σzq3= 19,5 кПа.

Полученные значения ординат наносим на геологический разрез. Ординаты эпюры дополнительного давления определяются по формуле

σzq = a p0;

где р0 - давление по подошве фундамента;

a – коэффициент рассеивания напряжений с глубиной.

Глубину сжимаемой толщи определяем из условия σzp < 0,2.σzq;

13,8<16,7кПа; что соответствует Z=6,4 м. Вычислим осадку основания по формуле


S=(β∑σzqi+σzq(i-1)/2).hi/Еi (30)


Осадка первого слоя


S1=(344+275/2.0,8+275+138/2,1).0,8/32000=0,011 м

Осадка второго слоя

S2=(89,5+55/2.0,8+55+31/.1,1+138+89,5/2.0,6) 0,8/18000=0,007 м

Осадка третьего слоя

S3=(27,5+20/2.0,8+31+27,5/2.1, l+20,6+13,8/2.0,8+

+13+10/2.1,6).0,8/9000=0,0074 м

Полная осадка равна S1+S2+S3=0,011+0,007+0,0074=0,026 м=2,6 см<10 см (Su)


Рисунок 4 – Расчетная схема для определения осадки основания фундамента


Таблица 4 – Ординаты эпюры напряжений

Слой

z, м

ξ=2z/b

α

σzqi

Еоi

Первый-супесь

0,0 0,8 1,8

0

0,57 1,29

1 0,8

0,4

344

275 139

32

Второй-песок

2,4

3,2 4,3

1,7

2,3

3,1

0,26

0,16

0,09

89,5

55,31

18

Третий-глина

4,8

5,6

6,4

7,2

8,0

3,4

4,0

4,6

5,1

5,7

0,08 0,06 0,04 0,03 0,03

27,5 20,6 13,2 10,1

9



3. Расчетно-конструктивная часть

3.1 Расчет и конструирование многопустотной предварительно напряженной плиты перекрытия при временной нагрузке 1500 Н/м2


Ширина полки принимается равной полной ширине панели, а ширина ребра – суммарной толщине ребер. Продольные ребра панели армируются вертикальными каркасами, а полки – плоскими сварными сетками с поперечной рабочей арматурой. Рабочая арматура (напрягаемая) продольных ребер (крайних и промежуточных) – из стали классов А–IV, A–V, A-VI, Aт-IV, Aт-V, Aт-VI, а в сетках полок – A-III, Bр-I.

Монтажная арматура и поперечные стержни из стали классов А-I, А-II, Bр-I. Продольные стержни арматуры в сетке нижней полки участвуют в восприятии усилий от изгиба панели и поэтому учитываются при подборе продольной арматуры ребер. При определении прогибов сечение пустотной панели приводится к эквивалентному двутавровому той же высоты и ширины.

Определение количества пустот для многопустотной панели шириной 1200 мм, длиной 6000 мм, высотой сечения 220 мм и с диаметром пустот 159 мм.

1) Конструктивная ширина панели:


в= вn −10 = 1200 −10 = 1190                   (31)


2) Требуемое число отверстий при толщине промежуточных ребер – 30 мм:


n = 1190: (159 + 30) = 6,2                                  (32)


Принимаем 6 пустот, тогда число промежуточных ребер – 5.

3) Ширина крайних ребер:


                  (33)


Минимальная толщина крайних ребер при боковых срезах 15 мм: 43–15=28,0 мм.

4) Толщина полок (верхней и нижней) при высоте сечения панели 220 мм и диаметре пустот 159 мм.


                        (34)


5) Исходные данные: Рассчитывается сборная железобетонная многопустотная панель перекрытия. Марка панели ПК-60.12 (серия 1.141–1, в. 58), бетон марки В 15, предварительно напрягаемая арматура класса Ат-V, способ предварительного напряжения – электротермический, расход бетона 1,18 м3 расход стали 44,96 кг, масса панели 2,95 т, номинальная длина 5,98 м, ширина 1,19 м, высота 0,22 м. Определение нагрузок:


Таблица 5 – Нагрузки на 1 м2 перекрытия

Вид нагрузки

Нормативная

нагрузка,

Н/м2

Коэффициент

надежности

по нагрузке

Расчетная

нагрузка,

Н/м2

– линолеум, 14 кг/м2

– Цементно-песчаная стяжка d=20 мм, r=1800 кг/м3

– Шлакобетон d=20 мм,

r=1800 кг/м3

– Многопустотная плита перекрытия с омоноличиванием швов d=220 мм

110


360


960


2960

1,1


1,3


1,3


1,1

121


468


1248


3256

Постоянная нагрузка g

4 390

-

5093

Временная нагрузка , в том числе:

кратковременная

длительная

1500


500

1000

-


1,3

1,3

1950


650

1300

Полная нагрузка

5890

-

7043


6) Определение расчетного пролета панели: Расчетный пролет панели l0 – принимаем равным расстоянию между осями ее опор. l0 = 5980–120 = 5860 (мм).

Расчетный изгибающий момент от полной нагрузки:


 (35)


где l0 – расчетный пролет плиты.

Расчетный изгибающий момент от полной нормативной нагрузки (для расчета прогибов и трещиностойкости) при γf =1:


               (36)


Расчетный изгибающий момент от нормативной постоянной и длительной временной нагрузок:


      (37)


Расчетный изгибающий момент от нормативной кратковременной нагрузки:


          (38)


Максимальная поперечная сила на опоре от расчетной нагрузки:


    (39)


Максимальная поперечная сила на опоре от нормативной нагрузки:


 (40)

          (41)


7) Подбор сечения панели: Для изготовления панели приняты: бетон класса В15, Еb=20,5·103 (МПа), Rb=8,5 (МПа), Rbr=0,75 (МПа), γb2=0.9; продольную арматуру из стали класса Ат-V, Rs=680 (МПа), Еs=190000 (МПа); поперечную арматуру из стали класса Вр-1 диаметром ∅5 мм; Rs = 410 (МПа), RSW= 260 (МПа); армирование – сварными сетками и каркасами; сварные сетки – из стали класса Вр-I диаметром ∅4 мм; RS =410 (МПа). Проектируем панель шести-пустотной. В расчете поперечное сечение пустотной панели приводим к эквивалентному сечению. Вычисляем:


 (42)


Приведенная толщина ребер b =116–6х14,3=30,2 (см).

Расчетная ширина сжатой полки b’f = 116 (см).

8) Характеристики прочности арматуры: Предварительное напряжение σSP – арматуры, принимается не более σSP=RSn-р, где RSn – нормативное сопротивление арматуры, RSn = 785 (МПа); р – допускаемое отклонение значения предварительного напряжения:


 (43)


Согласно «Руководству по технологии изготовления предварительно напряженных железобетонных конструкций», значение σSP принимается для термически упрочненных сталей не более 550 МПа. Принимаем σSP=550 (МПа). Проверяем выполнение условий:

σSP+р≤ RSn; σSP-р≥0,3 RSn

550+90=640≤785 (МПа); 550–90=460≥0,3.785=236 (МПа)

Вычисляем предельное отклонение предварительного напряжения при числе напрягаемых стержней np = 4:


 (44)


ΔγSP ≥ 0.1⇒ принимаем ΔγSP = 0,12. Коэффициент точности натяжения γSP =1−ΔγSP = 1− 0,12 = 0,88. При проверке по образованию трещин в верхней зоне панели при обжатии принимаем γSP=1+0,12=1,12. Предварительное напряжение с учетом точности натяжения σSP=0,88х550 = 485 (МПа). Расчет прочности панели по сечению, нормальному к продольной оси. Расчетное сечение – тавровое с полкой в сжатой зоне. Вычисляем:


    (45)


где h0 = h – а = 22 – 3 = 19 (см) защитный слой бетона.

Находим ξ=0,12, η=0,94. Высота сжатой зоны х=ξ·h0=0,12·19 = 2,28 (см) πh’f= 3,8 (см) – нейтральная ось проходит в пределах сжатой полки.

9) Сечение плиты при расчете прочности:

Граничная высота сжатой зоны:


                             (46)


где ω – характеристика сжатой зоны бетона:

ω=0,85–0,008·Rb=0,85–0,008·0,9·8,5 =0,78

σSC, U – предельное напряжение в арматуре сжатой зоны; σSC, U =500 (МПа),

σSR – напряжение в арматуре:

σSR = RS + 400 – σSP – ΔσSP = 680 + 400 – 485 = 595 (МПа);

ΔσSP = 0 (при электротермическом способе натяжения)



Расчетное сопротивление арматуры RS должно быть умножено на коэффициент:


                (47)


где η=1,15 – для арматуры класса АТ – V.

Вычисляем площадь сечения растянутой арматуры:


      (48)


Конструктивно принимаем 4∅12 АТ–V RS=4,52 (см2).

Расчет прочности панели по наклонному сечению: Q=25900 (H).

Проверяем условие прочности по наклонной полосе между наклонными трещинами, полагая ϕВ1 =1 (при отсутствии расчетной поперечной арматуры):


                         (49)


где

Условие соблюдается, размеры поперечного сечения панели достаточны. Вычисляем проекцию расчетного наклонного сечения на продольную ось с. Влияние свесов сжатых полок (при 7 ребрах):


     (50)


Влияние продольного усилия обжатия


             (51)


Вычисляем (1+ϕf+ϕn)=1+0,4+0,5=1,9φ1,5, принимаем 1,5:


 (52)


В расчетном наклонном сечении Qb=QSW=Q/2, тогда

с=Bb/0.5Qc=22,08х105/0,5х25900=171 (см); φ2h0=2·19=38 (см),


принимаем с=2h0=38 (см). В этом случае Qb=Bb/c=22,08·105/38=58105 (Н) φQ= =25900 (H), следовательно, по расчету поперечная арматура не требуется.

В ребрах устанавливаем конструктивно каркасы из арматуры ∅5 класса Вр-1. По конструктивным требованиям при h≤450 мм на при опорном участке l1=l/4 =628/4 = 157 (см) шаг стержней S = h/2 = 22/2 = 11 (см) и S≤15 (см) принимаем S=10 (см). В средней половине панели поперечные стержни можно не ставить, ограничиваясь их постановкой только на приопорных участках.

10) Расчет прочности наклонного сечения на действие изгибающего момента: Расчет производиться исходя из условия:


             (53)


где М – момент от внешней нагрузки, расположенной по одну сторону от рассматриваемого наклонного сечения, относительно оси, перпендикулярной плоскости действия момента и проходящей через точку приложения равнодействующей усилий в сжатой зоне;

- суммы моментов относительно той же оси соответственно от усилий в хомутах и продольной арматуре;

zSW, zSP – расстояния от плоскостей расположения соответственно хомутов и продольной арматуры.

Величина  – при хомутах постоянной интенсивности определяется по формуле:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.