скачать рефераты

МЕНЮ


Расчет сборных железобетонных конструкций многоэтажного производственного здания


собственный вес ригеля сечением b´h @0,3´0,6 м (размеры задаются ориентировочно)


0,95∙1,1∙0,3∙0,6∙25 = 4,7 кН/м;


итого: постоянная нагрузка g = 43.2 кН/м.

б) Временная нагрузка с коэффициентом снижения к1 = 0,75 (с γn = 0,95 и γƒ = 1,2):


ρ = 0,95∙0,75∙1,2∙8.5∙6,0 = 41.42 кН/м.


Полная расчетная нагрузка: q = g + ρ = 43.2 + 41.42 = 84.62 кН/м.


4.                Расчетные изгибающие моменты.


В крайнем пролете:


кН×м

На крайней опоре:


кН×м


В средних пролетах и на средних опорах:


 кН×м


Отрицательные моменты в пролетах при p/ ρ = 41.42 / 43.2 = 0,96 »1,0:

в крайнем пролете для точки «4» при β = - 0,010


M4=β (g+ρ) l12 = -0,010 ∙84.62∙4,5 2 = -17 кН∙м;


в среднем пролете для точки «6» при β= -0,013


M6=β (g+ρ) l22 = -0,013∙84.62∙4.7 2 = - 24.3 кН∙м.


5.                Расчетные поперечные силы


На крайней опоре:


QA = 0,45ql1 = 0,45∙84.62∙4,5 = 171.4 кН.


На опоре B слева:


0,55 × 84.62 × 4, 5 = 209.4 кН.

На опоре B справа и на средних опорах:


0,5 × 84.62 × 4.7 = 198.9 кН.


6.                Расчет ригеля на прочность по нормальным сечениям


Для арматуры класса A500 ξR = 0,49 (см. расчет продольного ребра плиты). Принимаем ширину сечения b=300мм. Высоту ригеля определяем по опорному моменту MB = 117 кН∙м, задаваясь значением ξ = 0,35 < ξR = 0,49. Находим αm = ξ (1 – 0,5ξ) = 0,35(1 – 0,5∙0,35) = 0,289. Сечение рассчитывается как прямоугольное по формуле (1):


мм;

h = h0+a = 343+65 = 408 мм;

принимаем h = 450 мм (h/b = 450/300 = 1,5).


Расчет арматуры

Расчетное сопротивление арматуры класса A500 будет Rs = 435 МПа. Расчет производится по формулам:


Аs =


а) Крайний пролет. M1 = 142.7 кН∙м; b = 300 мм; h = 450 мм; h0 = h - a = 450 – 65 = 385 мм (арматура расположена в два ряда по высоте)


Аs = 1023 мм2.

Принимаем арматуру 2Ø16 A500 + 2Ø20 A500 с АS = 402 + 628 = 1030 мм2.

Проверяем условие αm < αR:


αR = ξR(1-0,5 ξR) = 0,49(1-0,5∙0,49) = 0,37


Таким образом, условие αm = 0,279 < αR = 0,37 выполняется, т.е. для сечения ригеля с наибольшим моментом M1 условие выполняется.

б) Средний пролет. M2 = 117 кН∙м; b = 300 мм; h = 450 мм; h0 = h-a = 450-60=390 мм (арматура расположена в два ряда по высоте)


Аs =

791мм2


принято 2Æ14 A500 и 2Æ18 A500 с As = 308 + 509 = 817 мм2.

в) Средняя опора. MB = MC = M = 117 кН∙м; b = 300 мм; h = 450 мм; h0 = h - a = 450-65 = 385 мм (арматура расположена в один ряд с защитным слоем 50 мм)


Аs =

805мм2

принято 2Æ25 A500 с As = 982 мм2.

г) Крайняя опора. MA = 85.7 кН∙м; h0 = h - a = 450 – 65 = 385 мм (арматура расположена в один ряд с защитным слоем 50 мм);


Аs =

565 мм2

принято 2Æ20 A500 с As = 628 мм2.


д) Верхняя пролетная арматура среднего пролета по моменту в сечении «6»


M6 = 24.3 кН∙м; b = 300 мм; h = 450 мм; h0 =

=h - a = 450-35=415мм (однорядная арматура);

Аs =

138 мм2

принято 2Æ10 A500 с As= 157 мм2.


е) Верхняя пролетная арматура крайнего пролета по моменту в сечении «4»


M4 = 17 кН∙м; h0 = h - a = 415 мм (однорядная арматура);

Аs =

96.9 мм2

принято 2Æ8 А500 с As = 101 мм2.


7.                Расчет ригеля на прочность по наклонным сечениям на действие поперечных сил


В крайнем и средних пролетах ригеля устанавливаем по два плоских сварных каркаса с односторонним расположением рабочих продольных стержней. Наибольший диаметр продольных стержней в каждом каркасе d = 25 мм.


Qmax = 209.4 кН. Бетон В20 (Rb = 11,5МПа; Rbt = 0,9МПа γb1 = 1,0


Так как нагрузка на ригель включает ее временную составляющую).

Принимаем во всех пролетах поперечные стержни из стали класса А-II (А300) диаметром dsw = 6 мм (Asw = 28.3 мм2). Принятый диаметр поперечных стержней удовлетворяет требованиям обеспечения качественной сварки, расчетное сопротивление поперечных стержней принимаем, согласно Приложения, равным Rsw = 300 МПа. Количество поперечных стержней в нормальном сечении равно числу плоских сварных каркасов в элементе, т.е. n=2.

Вычисляем


Asw=n∙Asw1=2∙28,3=56.6 мм2;

RswAsw = 300∙56.6 = 16980 H.


Сечение прямоугольное с шириной b=300 мм и высотой h = 450 мм. Рабочая высота сечения на приопорных участках h0 = 385 мм (см. расчет продольной арматуры). В крайнем и среднем пролетах ригеля шаг поперечных стержней:предварительно принимаем


Sw1=100мм (S1≤0,5h0; S1≤300 мм);

Sw2=250 мм (S2 ≤0,75h0; S2 ≤500мм).

1.     Проверки на прочность наклонной сжатой полосы:


0,3 × Rb × b × h0 = 0,3 × 11,5 × 300 × 385 = 398.48 кH > QMAX = 209.4 кН


т.е. прочность полосы обеспечена


2. Проверка прочности наклонного сечения


Н/ мм.


Поскольку qsw=169.8 Н/мм > 0,25Rbtb = 0,25∙0,9∙300 = 67,5 Н/мм - хомуты полностью учитываются в расчете и Мb определяется по формуле:


 Н мм = 60.03 кН м.

кН/м


Поскольку


cмм < 3h0 = 3 ∙ 385 = 1155 мм


Принимаем c = 969 мм, c0= 2∙385=770 мм;


98060 H = 98.06 кН

 кН

кН (147.5)


Проверка условия


кН > Q=147.5 кН,


условие прочности обеспечивается.

Проверка требования


 мм > Sw1=100 мм


т.е. принятый шаг Sw1=100 мм удовлетворяет требованиям СП [4].

Определение приопорного участка

При равномерно распределённой нагрузке длина приопорного участка определяется в зависимости от:


 76.41 Н/мм, где:

 Н/ мм.


qsw2 = 67.92 Н/мм > 0,25 Rbt × b = 0,25 × 0,9 × 300 = 67,5 Н/ мм – условие выполняется, т.е. Mb и Qb,max не пересчитываем.

Так как  Н/ мм > q1 =63.91 Н/ мм, то:

,

 мм

где = 51975 Н


Обрыв продольной арматуры в пролете. Построение эпюры арматуры.

По изложенному выше расчету определяется площадь продольной рабочей арматуры в опасных участках сечения: в пролетах и на опорах, где действует наибольшие по абсолютной величине моменты.

Для определения места обрыва продольной арматуры строятся огибающая эпюра изгибающих моментов от внешних нагрузок и эпюра арматуры, представляет собой изображение несущей способности сечений ригеля Мult.

Моменты в пяти точках определяются по формуле:



Расчетные моменты эпюры арматуры, которое может воспринять балка в каждом сечении при имеющихся в этих сечениях растянутой арматуры, определяется по формуле:


, где

,мм – высота сжатой зоны.


AS – площадь арматуры в рассматриваемом сечении.

Место действия обрыва стержней отстаёт от теоретического на расстоянии W, принимаемом не менее величины, определяемой по формуле:


Q – расчетная поперечная сила в месте теоретического обрыва стержня;

qsw – усилие в поперечных стержнях на единицу длины элемента на рассматриваемом участке;

d – диаметр обрываемого стержня.

При правильном подборе и распределении продольной арматуры по длине ригеля эпюра арматуры Mult повсюду охватывает огибающую эпюру моментов M, нигде не врезаясь в нее, но и не удаляясь от нее слишком далеко в расчетных сечениях. В таком случае во всех сечениях ригеля, будет выполнятся условие прочности по моменту M<Mult и обеспечения экономичности расходование арматуры.

Построение эпюры арматуры ниже иллюстрируется на примере рассчитываемого ригеля рамы. Согласно заданию, построение эпюр производиться для крайнего пролета.

Подсчет моментов сведен в табл. 2, при этом отрицательные моменты в пролете вычисляются для отношения


p/g = 41.42/43.2 »1.


Таблица 2

Крайний пролет «0 - 5»

M = b q l12 = b × 84.62 × 4,52 = 1713.6· b (кН×м)

Сечения

0

1

2

2’

3

4

5

Положительные моменты

b

-

0,037

0,079

0,0833

0,077

0,030

-

-

63.4

135.4

142.7

132

51.4

-

Отрицательные моменты

b

-0,050

-0,003

+0,021

-

+0,018

-0,010

-0,0625

-85.68

-5.14

+36

-

+30.8

-17

-117

Нулевые точки эпюры положительных моментов располагаются на расстоянии 0,1 l1= 0,45 м от грани левой опоры и 0,125 l1 = 0,56 м от грани правой опоры. Огибающая эпюра моментов приведена на рис. 11. Под ней построена эпюра поперечных сил для крайнего пролета.

Ординаты эпюры Мult вычисляются через площади фактически принятой ранее арматуры и откладываются на том же чертеже.

На положительные моменты

На наибольший положительный момент M1 принята арматура 2Æ20 и 2Æ16 А500 с Аs = 1030мм2.


 мм


435 × 1030 × (385 – 0,5 × 130) = 143.4 кН×м

Ввиду убывания положительного момента к опорам, часть арматуры можно не доводить до опор, оборвав в пролете. Рекомендуется до опор доводить не менее 50% расчетной площади арматуры. Примем, что до опор доводится 2Ø20 A500 с АS = 628 мм2. Момент Мult, отвечающий этой арматуре, получим пропорционально ее площади:


 мм

435 × 628 × (385 – 0,5 × 79) = 94.4 кН×м


На отрицательные опорные моменты:

На момент МA принята арматура 2Ø20 А500 с АS=628 мм2.


 мм,

435 × 628 × (385 – 0,5 × 79) = 94.4 кН×м


На момент МB = МC принята арматура 2Ø25 А500 с АS=982 мм2.


 мм

435 × 982 × (385 – 0,5 × 123.8) = 138 кН×м


На отрицательные пролетные моменты

На момент М4 принята арматура 2Ø8 А500 с АS=101 мм2.


 мм

435 × 101 × (415 – 0,5 × 12.7) = 17.95 кН×м


Обрываемые пролетные и опорные стержни заводятся за место теоретического обрыва на величину W. Расстояние от опорных стержней до мест теоретического обрыва стержней а определяется из эпюры графически.

В сечении 2 каркаса ( dsw= 6 мм; Аsw1=28.3 мм2; Аsw=56.6 мм2; Rsw= 300 МПа)


H/мм.


Значения W будут (см. рис.11): для пролетных стержней 2Æ25 A- II (А300)

слева:407 мм < 20d = 500 мм

справа: 512 мм > 20d = 500 мм;


для надопорных стержней слева 2Ø28 А300:


504 мм < 20d = 560 мм


справа 2Æ36 A-II (А300)


629 мм < 20d = 720 мм

Принято W1= 500 мм; W2 = 550 мм; W3 = 600 мм; W4 = 750 мм.

 


6. Расчет сборной железобетонной колонны


Сетка колонн  м


Высота этажей между отметками чистого пола – 3.3 м. Нормативное значение временной нагрузки на междуэтажные перекрытия 8.5 кH/м2, расчетное значение снеговой нагрузки на покрытие – 2.4 кH/м2 (для г.Ярославля). Кратковременная нагрузка превышает 10% от всей временной. Коэффициент снижения ее на междуэтажных перекрытиях к2=0,8. Коэффициент надежности по назначению здания gn=0,95.

Основные размеры ребристых плит и ригелей перекрытий и покрытия принимаются по предыдущему расчету. Толщина пола – 100 мм. Бетон тяжелый класса B25, продольная арматура – класса A400, поперечная арматура – класса A240.

Расчет колонны на сжатие

Полная грузовая площадь для одной внутренней колонны составит


5.7×6,7=38.19 м2.


Подсчет нагрузок на грузовую площадь сведен в таблицу.

Нагрузку от собственного веса конструкций покрытия и междуэтажных конструкций принимаем по данным предыдущего расчёта.

Колонну принимаем сечением 400×400 (мм). Собственный вес колонны длиной 3.3 м с учетом веса двухсторонней консоли будет:


Нормативный – 0,95[0,4×0,4×3.3 +(0,3×0,45+0,3×0,3) ×0,4] ×25 = 14.68кН.

Расчетный – 1,1×14.68 = 16.15 кН.


Расчет колонны по прочности на сжатие производим для двух схем загружения:

Расчет колонны по условиям первой схемы загружения

За расчетное принимаем верхнее сечение колонны 1-го этажа, расположенное на уровне оси ригеля перекрытия этого этажа. Расчет выполняется на комбинацию усилий Mmax-N, отвечающую загружению временной нагрузкой одного из примыкающих к колонне пролетов ригеля перекрытия 1-го этажа и сплошному загружению остальных перекрытий и покрытия.

а) Определение усилий в колонне. Расчетная продольная сила N.

Постоянная и временная нагрузки на одну внутреннюю колонну от покрытия и всех межэтажных перекрытий, кроме того перекрытия 1-го этажа; собирается с полной грузовой площади 38.19 м2. Постоянная нагрузка от перекрытия 1-го этажа собирается с полной грузовой площади.


Вид нагрузки

Нагрузка (кН/м2)××

Нормативн. нагрузка (кН)

Расчетная нагрузка

А. Нагрузка на перекрытие

1. Собственный вес конструкций кровли

(ковер, утеплитель, стяжка и пр.)

2. Вес железобетонной конструкции покрытия.

3. Временная нагрузка (снег)

2,95×38.19×0,95




3,8×38.19×0,95


2.4×38.19×0,95

107.03




137.9


87.1

1,3




1,1


1/0,7

139.15




151.7


124.4

Полная нагрузка


332.03


415.25

Б. Нагрузка на межэтажное перекрытие

1. Вес железобетонных конструкций перекрытия

2. Вес пола и перегородок

3. Временная нагрузка с коэф. снижения к2=0,8

0,8×8.5=6.8 кН/м2

3,8×38.19×0,95


2,5×38.19×0,95


6.8×38.19×0,95


137.9


90.7


246.7



1,1


1,1


1,2



151.7


99.8


296



Полная нагрузка


475.3


547.5

Временная нагрузка на перекрытие 1-го этажа собирается с половины грузовой площади, учитывается полосовое ее расположение через пролет. Расчетная продольная сила N в расчетном сечении колонны с учетом собственного веса двух ее верхних этажей, расположенных выше рассматриваемого сечения:


N=415.25+3×547.5-296/2+3×16.15=1958.2 кН.


Расчетный изгибающий момент М.

Для определения момента М в расчетном сечении 1 колонны временную нагрузку на ригеле перекрытия 1-го этажа располагаем в одном из примыкающих к колонне пролетов. Величина расчетной временной нагрузки на 1 м длины ригеля с учетом коэффициента снижения к2=0,8:


 кН.


Расчетные высоты колонн будут: для первого этажа


Н1=Н1эт+0.15-hпол-hпл-hриг/2=3.3+0,15-0,1-0,5-0,45 /2=2.625 м.


для второго этажа


Н2=Н2эт=3.3 м.


Линейные моменты инерции:

- колонны сечением 400×400 мм:


Для первого этажа м3

Для второго этажа м3.


- ригеля сечением 300×450 мм, пролетом l=5.7 м:


м3.


Расчетный изгибающий момент М в расчетном сечении колонны по формуле:


кНм.


б) Расчет колонны по прочности.

Принимая условно всю нагрузку длительно действующей, имеем


NL=1958.2 кН и ML=50,67 кНм; l0=H1=2.625 м.


Для тяжелого бетона класса В25 имеем расчетное сопротивление бетона Rb=14,5×0,9=13.05МПа, модуль упругости бетона Еb=30000 МПа.

Для продольной арматуры класса А400 расчетное сопротивление Rs=Rsc=355 МПа; модуль упругости Еs=200000 МПа.


h0=h-a=400-50=350 мм (предварительно а=50 мм).

необходим учет прогиба колонны


т.е. значение М не корректируем.

 т.к. вся нагрузка принята длительно действующей.


Так какпринимаем

Задаемся μ = 0,0185;


Жесткость колонны:



Критическая сила:


;

;

кНм;

; ;

Если  


Допускается принимать



Проверка


(0.3%)


Расчет колонны по усилиям второй схемы загружения

За расчетное принимается нижнее сечение колонны 1-го этажа, расположенное на уровне верха фундамента. Расчет выполняется на комбинацию усилий Nmax-M, отвечающих сплошному загружению временной нагрузкой всех междуэтажных перекрытий и покрытия.

а) Определение усилий в колонне. Расчетная продольная сила N.

Постоянная и временная нагрузка на одну внутреннюю колонну от покрытия и всех перекрытий собираются с полной грузовой площади. Учитывается также собственный вес колонны высотой в три этажа. На основании данных таблицы получим:


N=415.25+3×547.5+4×16.15=2122.35 кН.


Расчетный изгибающий момент М.

Поскольку здание имеет жесткую конструктивную схему и пролеты ригеля, примыкающие к рассматриваемой колонне слева и справа, равны, то при сплошном загружении временной нагрузкой покрытия и всех междуэтажных перекрытий изгибающий момент в сечении колонны будет равен нулю.

б) Расчет колонны на прочность.

В нижнем сечении колонны 1-го этажа действует продольная сила N=2122.35 кН. Изгибающий момент в сечении М=0. Поскольку расчетный эксцентриситет с0=М/N=0, сечение рассчитывается на сжатие продольной силой N=2122.35 кН, приложенной со случайным эксцентриситетом е0.

Так как вся временная нагрузка принята длительной, то Nl=N=2122.35 кН. При Nl/N=1 и l0/h=6.6 для тяжелого бетона находим


мм2.

Коэффициент армирования:


Процент армирования 0.39% т.е. лежит в пределах оптимального армирования.

Таким образом, в результате проведённых расчётов видим, что


Аs,tot=638 мм2 > Аs+А¢s =2×247=494 мм2.


Поэтому продольную рабочую арматуру подбираем по наибольшей требуемой площади


Аs,tot=638 мм2.

Принимаем 6Ø12 A500 с АS=679 мм2 (+6.4%)


Принятую продольную арматуру пропускаем по всей длине рассчитываемой монтажной единицы без обрывов. Колонна армируется сварным каркасом из арматуры диаметром 8 мм класса А240 с шагом S = 400мм.


7. Расчет консоли колонны


Консоль колонны предназначена для опирания ригеля рамы. Консоли колонны бетонируются одновременно с ее стволом, поэтому выполняется также из тяжелого бетона класса В25 имеем расчетное сопротивление бетона Rb=13.05 МПа, Rbt=0,945 МПа, модуль упругости бетона Еb=30000 МПа. Продольная арматура выполняется из стали класса A400 с расчетным сопротивлением Rs=355 МПа. Поперечное армирование коротких консолей выполняется в виде горизонтальных двухветвевых хомутов из стержней диаметром 8мм класса А240. Модуль упругости поперечных стержней Еs=200000МПа. Консоль воспринимает нагрузку от одного междуэтажного перекрытия с грузовой площади ω/2 = 19.095 м2.



Расчетная поперечная сила передаваемая на консоль, составляет:


Q=547.5/2=273.75 кН.

Принимаем вылет консоли lc=300 мм, высоту сечения консоли в месте примыкания ее к колонне, h=600мм. Угол наклона сжатой грани консоли к горизонту . Высота сечения у свободного края h1=600-300=300 мм > h/3=200 мм. Рабочая высота опорного сечения консоли h0=h-a=600-50=550 мм. Поскольку lc=300<0.9h=495мм, консоль короткая.

Расстояние от приложения силы Q до опорного сечения консоли будет:


a= lc-lsup/2=300-240/2=180мм.


Проверяем прочность бетона на смятие под опорной площадкой:


МПа < Rb=13.05 МПа.


Проверяем условие прочности по наклонной сжатой полосе:



Принимаем шаг горизонтальных хомутов Sw=150 мм.


Asw=nAsw1=2×50.3=100.6 мм2.

Проверяем условие прочности:


= 0,8 × 1,06 × 13.05 × 400 × 211,2 × 0,88 = 822703 H


Площадь сечения продольной горизонтальной арматуры консоли As определяют по изгибающему моменту у грани колонны (в опорном сечении консоли), увеличенному на 25% за счет возможности отклонения фактического приложения нагрузки Q на консоль от ее теоретического положения в неблагоприятную сторону: M=1,25Q × a.


М=1,25Q×а=1,25×273.75×0,18=61.59 кН·м.


Площадь сечения арматуры будет равна:

мм2.

Принимаем 2Ø16 A400 с АS=402 мм2 .


Список литературы


1.       СНиП 2.01.07-85*. Нагрузки и воздействия [Текст]: утв. Госстроем России 29.05.2003: взамен СНиП II-6-74: дата введения 01.01.87. – М.: ГУП ЦПП, 2003. – 44 с.

2.       СНиП 2.03.01-84. Бетонные и железобетонные конструкции [Текст]: Госстрой СССР – М.: ЦИТП, 1989. – 85 с.

3.       СНиП 52-01-2003. Бетонные и железобетонные конструкции. Основные положения [Текст]: утв. Государственным комитетом Российской Федерации по строительству и жилищно-коммунальному комплексу от 30.06.2003: взамен СНиП 2.03.01-84: дата введ. 01.03.2004. – М.: ГУП НИИЖБ, 2004. – 26 с.

4.       СП 52-101-2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры [Текст]: утв. Государственным комитетом Российской Федерации по строительству и жилищно-коммунальному комплексу от 30.06.2003: взамен СНиП 2.03.01-84: дата введ. 01.03.2004. – М.: ГУП НИИЖБ, 2004. – 55 с.

5.       Руководство по расчету статически неопределимых железобетонных конструкций [Текст]: Научно-исследовательский институт бетона и железобетона Госстроя СССР. – М.: Стройиздат, 1975. – 192 с.

6.       Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предварительного напряжения) [Текст]: ГПИ Ленингр. Промстройпроект Госстроя СССР, ЦНИИпромзданий Госстроя СССР. – М.: Стройиздат, 1978. – 175 с.

7.       Байков, В. Н. Железобетонные конструкции. Общий курс [Текст]: учеб. для вузов / В. Н. Байков, Э. Е. Сигалов. Изд. 5-е, перераб. и доп. – М.: Стройиздат, 1991. – 767 с.: ил.

8.       Руководство по расчету статически неопределимых железобетонных конструкций [Текст]. – М.: Стройиздат, 1975.

9.       Руководство по конструированию бетонных и железобетонных конструкций из тяжелого бетона (без предварительного напряжения) [Текст]. М.: Стройиздат, 1978.

10.  Пособие по проектированию бетонных и железобетонных конструкций из тяжелых и легких бетонов без предварительного напряжения арматуры. [Текст]. – М.: ЦИТП Госстроя СССР, 1988 г.


Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.