скачать рефераты

МЕНЮ


Проектирование несущих железобетонных конструкций многоэтажного промышленного здания


М = 119,04 кН = 11 904 кН·см; Rb = 22 МПа = 2,2 кН/см2.


По значению коэффициента А0 находим значения относительной высоты сжатой зоны ξ = x / h0 и относительного плеча внутренней пары сил η0 = z0 / h0, используя специальную таблицу или предлагаемые аналитические зависимости:


,

η0 = 1 - 0,5ξ = 0,976.


Фактическая высота сжатой зоны:


х = ξ h0 = 0,0477×32 = 1,53 см < hf´ = 6 см,


поэтому граница сжатой зоны находится в пределах полки.

Для напрягаемой арматуры необходимо использовать коэффициент условий работы γs6, который учитывает увеличение сопротивления арматуры при её деформациях за границей условного предела текучести; этот коэффициент определяется по формуле (27) СНиП [2]:



где η - коэффициент, учитывающий класс арматуры; для арматуры класса А-VI η=1,10 (п.1.13. СНиП [2]). Тогда



поэтому принимаем γs6 = η = 1,10.

Требуемая площадь сечения продольной рабочей арматуры:



По сортаменту арматуры назначаем диаметр стержней так, чтобы он был не менее требуемой величины Аs. Число стержней - 2, по одному в каждом ребре.

Принимаем 2Æ 18 А 1000 (А-VI), Аs = 5,09 см2.

Сортамент арматуры можно найти в Приложении 3. Не следует создавать излишний запас прочности элемента. Переармированные элементы не только неэкономичны, но и опасны (см. Приложение 5).

Толщина защитного слоя бетона аb продольной рабочей арматуры, необходимого для предохранения её от коррозии, должна составлять (п.5.5 СНиП [2]):

не менее диаметра стержня: аbd = 18 мм,

не менее 20 мм (в ребрах высотой h ≥ 250 мм): аb ≥ 20 мм.

Защитный слой бетона - это толщина слоя бетона от грани элемента до ближайшей поверхности арматурного стержня.

Фактическая толщина защитного слоя:


аb = а - 0,5 d = 30 - 0,5·18 = 21 мм > 20 мм,


значит, требования СНиП по величине защитного слоя выполнены.

Если бы указанные требования не выполнялись, расстояние а пришлось бы увеличить, а расчёт (п.3.6.) произвести заново.

 


3.6 Конструирование поперечной рабочей арматуры панели


Конструирование поперечной арматуры заключается в выборе класса, диаметра и шага поперечных стержней. Обычно конструирование сопровождается расчётом, в результате которого устанавливается, обеспечена ли прочность элемента по наклонному сечению. Однако, учитывая сравнительно небольшой объем курсового проекта, ограничимся лишь конструированием.

Используем поперечную арматуру из проволоки класса Вр-I, диаметром 5 мм (Æ5Вр-I).

Шаг поперечной арматуры назначаем не основе конструктивных требований п.5.27 СНиП [2]:

на приопорных участках длиной, равной ¼ пролета l0= l/4 = 7,8/4 = 1,95 м

при высоте сечения h ≤ 450 мм (в данном случае h = 350 мм) шаг поперечной арматуры должен быть не более:


,

S1 £ 150 мм.


Принимаем S1 = 150 мм (кратно 50 мм), см. прил.1.

на остальной части пролёта при высоте сечения h > 300 мм шаг поперечной арматуры должен быть не более:


,

S2 £ 500 мм.


Принимаем S2 = 250 мм (кратно 50 мм).

При h ≤ 300 мм поперечную арматуру на этом участке допускается не устанавливать.

Поперечные стержни входят в состав плоского каркаса, которому присвоим марку К-1 (см. арматурные чертежи в графической части). Продольные стержни этого каркаса принимаем конструктивно, из арматуры Æ8А-I.

Для возможности свободной укладки каркаса в форму концы всех его стержней должны отстоять от грани элемента на 10 мм (п.5.9 СНиП [2]). Величина защитного слоя бетона для поперечной и конструктивной арматуры в рёбрах высотой h ≥ 250 мм должна быть не менее диаметра стержня и не менее 15 мм (п.5.6 СНиП).

Продольная напрягаемая арматура не входит в состав никаких каркасов, так как приварка к ней стержней ухудшает её прочностные свойства.

Поперечные ребра армируем каркасами К-2. Используем те же виды арматуры, что и для каркаса К-1. Шаг стержня назначаем конструктивно (например, 200 мм).


3.7 Расчет полки панели на местный изгиб


3.7.1 Общие соображения

Плитная часть панели (или просто плита), называемая в тавровом сечении полкой, работает на изгиб как пластина, опёртая по контуру на продольные и поперечные ребра. Работа плиты под действием нагрузок зависит от соотношения сторон опорного контура.

При отношении сторон l2/l1 > 2 (рис.3.3, а), плиты работают в направлении меньшей стороны, а в другом направлении за них работают рёбра. Такие плиты называются балочными, так как их рассчитывают как балки пролётом l1, выделяя из них полосы шириной b = 1 м.

При отношении сторон l2/l1 ≤ 2 (рис.3.3, б), что бывает, например, при частом расположении поперечных рёбер, плиты работают в двух направлениях в плане и их называют за это плитами, опёртыми по контуру. Изгибающие моменты в таких плитах меньше, чем в балочных, поэтому опёртые по контуру плиты являются более эффективными. Следует помнить, что в запас прочности расчёт такой плиты можно провести и по балочной схеме.

Очевидно, что в нашей панели перекрытия, у которой поперечные ребра расположены только по краям, имеем дело с балочной плитой.

 

3.7.2 Нагрузки на полку панели

Равномерно распределённая нагрузка на полку панели с несущественным превышением может быть принята такой же, как и для всей плиты (табл.2.1). Линейную расчётную нагрузку определяем сбором поверхностной нагрузки с условной ширины b = 1 м:


q = P0 b γn = 13,091·1,0·0,95 = 12,436 кН/м.


3.7.3 Расчётная схема полки, внутренние усилия

В рёбристой панели расчётная схема полки принимается в виде балки с жёсткой заделкой на концах (рис.3.4, а), в панели типа 2Т - в виде двухопорной консольной балки (рис.3.4, б).

Расчётный изгибающий момент:

в рёбристой панели (с учётом перераспределения усилий):


;


в панели типа 2Т:


.


3Рис.3.3.

Плиты балочные (а) и опёртые по контуру (б).

3Рис.3.4.

Внутренние усилия в полке рёбристой панели (а) и панели типа 2Т (б); условное поперечное сечение полки (в).


3.7.4 Поперечное сечение полки

Условное поперечное сечение полки (рис.3.4, в) - прямоугольное, шириной b = 100 см, высотой h¢f = 6 см.

Плита армируется сеткой из арматуры Æ5В 500, Rs = 410 МПа.

Минимальная толщина защитного слоя бетона в плитах толщиной до 100 мм составляет аb = 10 мм (п.5.5 СНиП [2]). Тогда минимально необходимое расстояние от нижней грани сечения до центра тяжести арматуры (диаметром d = 5 мм):


а = аb + 0,5d = 100 + 0,5·5 = 12,5 мм,

принимаем а = 15 мм. Рабочая высота сечения h0 = h¢f - a = 6 - 1,5 = 4,5 см.


3.7.5 Подбор рабочей арматуры

Параметр А0: .

Относительная высота сжатой зоны: .

Относительное плечо внутренней пары сил: η = 1 - 0,5ξ = 0,984.

Требуемая площадь арматуры: .

По сортаменту арматуры определяем, что нам необходимо не менее четырех стержней, площадь сечения 4Æ5 В 500 равна Аs = 0,79 см2.

Шаг арматурных стержней тогда составит: .

Шаг продольной рабочей арматуры сетки при высоте плиты до 150 мм должен составлять не более 200 мм (п.5.20 СНиП [2]), поэтому принимаем S = 200 мм (кратно 50 мм).

 

3.7.6 Конструирование сеток

Выбранная рабочая арматура располагается параллельно короткой стороне сетки. В направлении длиной стороны арматуру ставим конструктивно: принимаем стержни Æ4В 500 с шагом 200 мм (допускается не более 200 мм, кратно 50 мм).

Арматурная сетка размещается в растянутой зоне сечения полки, положение которой определяется по эпюре изгибающих моментов (рис.3.4).

В рёбристой панели используется две сетки: пролётные моменты воспринимают сетки С-1, установленные у нижней грани сечения; опорные моменты воспринимают аналогичные, но более узкие сетки С-2 (2 шт.), установленные у верхней грани сечения.

В панели типа 2Т используется одна сетка С-1, расположенная у нижней грани сечения; вблизи ребер и на консолях стержни сетки переводятся в верхнюю зону.

Шаг стержней у краев сетки может отличаться от основного (в меньшую сторону, кратно 10 мм).

 

3.8 Рабочие чертежи панели перекрытия


На основе полученных в ходе расчета и конструирования данных выполняем арматурные чертежи панели перекрытия. На них показывается размещение арматуры в сечении элемента, и, кроме того, вычерчиваются отдельно арматурные каркасы и сетки.

Эти чертежи являются рабочими: по ним будет изготавливаться конструкция, поэтому они должны обладать достаточной степенью детализации.

Для того чтобы оперативно определять, какое количество арматуры нужно для изготовления железобетонного изделия, на рабочих чертежах приводятся эти сведения в виде таблицы, которую принято называть спецификацией арматуры.


4. Расчет и конструирование ригеля перекрытия


4.1 Прочностные и деформативные характеристики бетона и арматуры


Бетон

Используем тяжелый бетон класса В25 (по заданию), подвергнутый тепловой обработке при атмосферном давлении.

Расчетные сопротивления бетона (табл.13 СНиП [2]):

сжатию Rb = 14,5 МПа,

растяжению Rbt = 1,05 МПа.

Коэффициент условий работы, учитывающий длительность действия нагрузки γb2 = 0,9 (табл.15 СНиП [2]).

Начальный модуль упругости бетона Еb = 27 000 МПа (табл.18 СНиП [2]).

Арматура

Продольная рабочая арматура - ненапрягаемая, класса А400 (А-III) диаметр Æ10…40 мм.

Расчётное сопротивление растяжению Rs = 365 МПа (табл.22* СНиП [2]).

Модуль упругости арматуры Es = 200 000 МПа (табл.29* СНиП [2]).

Поперечная рабочая арматура - также класса А400 (А-III).

Расчетное сопротивление растяжению поперечной арматуры (табл.22* СНиП [2]):


Rsw = 285 МПа (Æ6…8 мм), Rsw = 290 МПа (Æ10…40 мм).


Если диаметр поперечных стержней меньше 1/3 диаметра продольных стержней, значение Rsw = 255 МПа (примеч. к табл.22* СНиП [2]).


4.2 Подбор продольной рабочей арматуры ригеля


Расчетное поперечное сечение ригеля - прямоугольное (рис.4.1). Размеры сечения установлены в процессе компоновки конструктивной схемы каркаса (п.1.5):

высота h = 750 мм,

ширина b = 250 мм.

Арматура располагается в растянутой зоне сечения, положение которой определяется по эпюре изгибающих моментов в ригеле: в пролёте - внизу, на опоре - вверху. Арматуру располагаем в два ряда, чтобы иметь возможность не ставить (обрывать) часть стержней там, где они не требуются по расчёту.

Порядок подбора продольной рабочей арматуры в ригеле такой же, как и в панели перекрытия. Результаты подбора арматуры приведены в табл 4.1.

Рабочая высота сечения: h0 = h - a,

где а - расстояние от растянутой грани сечения до центра тяжести продольной рабочей арматуры; принимается в пределах а = 4…10 см (задаётся по своему усмотрению, при этом чем больше изгибающий момент в сечении, тем больше должно быть это расстояние).


Рис.4.1 Расчётное поперечное сечение ригеля: а - в пролёте, б - на средних опорах.


Условный параметр А0:

Относительная высота сжатой зоны:

Относительное плечо внутренней пары сил: η = 1 - 0,5ξ

Требуемая площадь сечения арматуры:

Подбираем по сортаменту необходимый диаметр стержня, учитывая, что число стержней в сечении - 4.

Арматура подбирается для трех сечений ригеля:

1 - сечение в крайнем пролете (М11);

2 - сечение в левой средней опоре (М21 = М23);

3 - сечение в среднем пролете (М22).

На средней опоре используется расчётный изгибающий момент в сечении ригеля по грани колонны (п.2.4.3).

Граничная относительная высота сжатой зоны:


,

где ω = a - 0,008 Rbgb2 = 0,85 - 0,008 × 14,5 × 0,9 = 0,7456;

σsR = Rs = 365 МПа (для ненапрягаемой арматуры).


Толщина защитного слоя бетона аb для продольной рабочей арматуры должна составлять (п.5.5 СНиП [2]):

не менее диаметра стержня: аbd,

не менее 20 мм в балках высотой h ≥ 250 мм: аb ≥ 20 мм.

Расстояние в свету между стержнями продольной рабочей арматуры аs должно составлять (п.5.5 СНиП [2]):

не менее наибольшего диаметра стержня: аsd,

не менее 25 мм для нижней арматуры и 30 мм для верхней: аs ≥ 25 (30) мм.

Расстояния по высоте между осями арматурных стержней (рис.4.1) должны назначаться с учётом этих требований, а также кратными 5 мм:


а1 ³ аb + 0,5d, кратно 5 мм;

а2 ³ аs + d, кратно 5 мм.


Тогда расстояние от растянутой грани сечения до центра тяжести продольной рабочей арматуры составит:


а = а1 + 0,5а2.


Если оно сильно отличается от принятого ранее, особенно в большую сторону, то прочность может быть не обеспечена и расчёт необходимо провести заново. Если это расстояние отличается не сильно и площадь арматуры взята с запасом, расчёт можно не повторять. Окончательно это выяснится в табл.4.2.


4.3 Подбор продольной рабочей арматуры ригеля


Таблица 4.1.

Расчётное сечение

в крайнем пролёте

на левой средней опоре

в среднем пролёте

М, кН·см

М11 = 60 799

Mfr = 43 400

М22 = 34 098

h0 = h - a, см

75 - 8 = 67

75 - 7 = 68

75 - 6 = 69

А0

0,4151

0,2877

0,2195

ξ

0,5880

0,3484

0,2510

η

0,706

0,826

0,874

Требуемая Аs, см2

35,22

21,17

15,49

Принятое армирование

4Æ36 А 400

4Æ28 А 400

4Æ25 А 400

Фактич. Аs, см2

40,72

24,63

19,68

а1, мм

Минимальное

36 + 0,5×36 = 54

28 + 0,5×28 = 42

25 + 0,5×25 = 37,5

Принятое

55

45

40

а2, мм

Минимальное

36 + 36 = 72

30 + 28 = 58

25 + 25 = 50

Принятое

75

60

50

Фактич. а, мм

55 + 0,5·75 = 92,5

45 + 0,5·60 = 75

40 + 0,5×50 = 65

Фактич. h0 = h - a, см

75 - 9,25 = 65,75

75 - 7,5 = 67,5

75 - 6,5 = 68,5

Расст. h01 = h - a1, см

75 - 5,5 = 69,5

75 - 4,5 = 70,5

75 - 4 = 71

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.