скачать рефераты

МЕНЮ


Проектирование несущих железобетонных конструкций многоэтажного промышленного здания


4.4 Подбор поперечной рабочей арматуры ригеля


4.4.1 Конструирование поперечной арматуры

Диаметр стержней поперечной арматуры d принимается из условия ее свариваемости с продольной арматурой наибольшим диаметром D = 36 мм:


d ≥ 0,25D = 0,25·36 = 9 мм.


Чтобы расчётное сопротивление поперечной арматуры не снижалось (п.4.1), её диаметр должен составлять


dD/3 = 36/3 = 12 мм.


Окончательно диаметр назначим после расчёта. Если по расчёту поперечная арматура требоваться не будет, её диаметр примем только исходя из указанных здесь условий.

Шаг стержней поперечной арматуры назначается в соответствии с конструктивными требованиями п.5.27 СНиП [2], затем проверяется расчетом прочности по наклонному сечению.

На приопорных участках длиной L0 = L/4 = 7,8/4 = 1,95 м

при высоте сечения h > 450 мм (в данном случае h = 750 мм)


,

S1 £ 500 мм.


Принимаем S1 = 250 мм (кратно 50 мм), см. прил.1.

На остальной части пролета при h>300 мм:


,

S2 £ 500 мм.


Принимаем S2 = 500 мм (кратно 50 мм).


4.4.2 Общие соображения по расчёту прочности наклонных сечений

Для обеспечения прочности элемента по наклонному сечению необходимо провести три расчёта:

Расчёт на действие поперечной силы по наклонной трещине.

Расчёт на действие изгибающего момента по наклонной трещине.

Расчёт на действие поперечной силы по наклонной полосе между наклонными трещинами.

Расчёт на действие изгибающего момента допускается не проводить, если все стержни продольной арматуры доведены до опоры и имеют надёжную анкеровку. В данном случае некоторые стержни не доводятся до опоры, но отвечают определённым конструктивным требованиям, которые учтены в п.4.4., поэтому расчёт на действие изгибающего момента выполнять не будем.

Анкеровка арматуры - обеспечение восприятия арматурой действующих на неё усилий путём заведения её на определённую длину за расчётное сечение или устройства на её концах специальных анкеров.

Расчет прочности ригеля по наклонному сечению на действие поперечной силы проведем для сечения, в котором значение Q максимальное (сечение слева от средней опоры ригеля), Q = Q21 = 470,27 кН, см. п.2.4.3.

Установленный в результате расчёта шаг поперечной арматуры в целях унификации принимаем и возле остальных опор. При необходимости можно провести соответствующие расчёты и увеличить шаг арматуры.


4.4.3 Расчет на действие поперечной силы по наклонной трещине

1-й этап. Установим необходимость проведения расчёта.

Поперечное усилие в сечении с наклонной трещиной воспринимает бетон (Qb) и поперечная арматура (Qsw). Расчетная схема усилий приведена на рис.4.2.


 

Рис.4.2 Схема усилий в наклонном сечении изгибаемого элемента при расчёте по прочности.


Минимально возможное значение поперечного усилия, воспринимаемого бетоном (по ф-ле п.3.31* СНиП [2]):


Qb,min = jb3 Rbt gb2 bh0 = 0,6×0,105×0,9×25×65,75 = 93,20 кН < Q = 470,27 кН.


здесь jb3 - коэффициент, учитывающий вид бетона; для тяжелого бетона jb3 = 0,6.

В качестве рабочей высоты сечения принимается фактическое значение h0 в крайнем пролёте из табл.4.1.

Если Q < Qb,min, то поперечная арматура по расчёту не требуется.

Фактически бетон может воспринимать большее усилие, чем Qb,min, поэтому уточним значение Qb. В общем случае расчета принимается, что поперечное усилие распределяется поровну между бетоном и поперечной арматурой:


Qb = Qsw = Q / 2 = 470,27/2 = 235,14 кН.


Параметр, характеризующий сопротивление бетона образованию наклонных трещин:


Mb = jb2 Rbt gb2 bh02 = 2,00×0,105×0,9×25×65,752 = 20 426 кН×см;


здесь jb2 - коэффициент, учитывающий вид бетона; для тяжелого бетона jb2 = 2,00.

Длина проекции опасной наклонной трещины на продольную ось элемента из ф-лы (76) СНиП [2]:



Величина с0 принимается в пределах hс0 ≤ 2h0 = 2·65,75 = 131,5 см.

Указанное условие выполняется, и мы оставляем с0 без изменения.

Когда условие не выполняется, то с0 принимается равным верхнему или нижнему пределу (например, если получается с0 > 2h0, то следует принимать с0 = 2h0).

Поперечное усилие, воспринимаемое бетоном:



Получили Qb < Q, значит бетон не может воспринять всё усилие и поперечная арматура требуется по расчёту.

2-й этап. Найдём шаг поперечной арматуры, необходимой по расчёту.

Необходимая интенсивность поперечного армирования из ф-лы (82) СНиП [2]:


.


В соответствии с ф-лой (33) СНиП [2] величина qsw принимается не менее:


,

qsw = 2,707 кН/см > 0,709 кН/см,


условие выполняется.

Требуемый диаметр поперечных стержней из формулы (81) СНиП [2]:


.


В поперечном сечении ригеля устанавливается два каркаса с поперечной арматурой, поэтому принимаем по сортаменту 2Æ14 А 400 (А-III), (Аsw = 3,08 см2).

Условие dD/3 выполняется: d = 14 мм > 36/3 = 12 мм.

Максимально допустимый шаг, свыше которого трещины появляются между поперечными стержнями и усилия полностью передаются на бетон:


;


условие S Smax выполняется.

3-й этап (проверочный). Найдём несущую способность наклонного сечения с принятым армированием.

Интенсивность поперечного армирования (усилие в поперечных стержнях, отнесённое к единице длины элемента):


.


Длина проекции опасной наклонной трещины по ф-ле (80) СНиП [2]:


.


Поперечное усилие, воспринимаемое бетоном:


.


Поперечное усилие, воспринимаемое арматурой:


Qsw = qsw с0 = 3,573×75,61 = 270,15 кН.


Как уже отмечалось,


Qb = Qb + Qsw = 270,15 + 270,15 = 540,30 кН > Q = 470,27 кН.


Таким образом, прочность элемента на действие поперечной силы по наклонной трещине обеспечена. Проверка: поперечные усилия, воспринимаемые бетоном и арматурой, примерно равны, что подтверждает правильность принятой ранее предпосылки.


4.4.3 Проверка прочности на действие поперечной силы по наклонной полосе между наклонными трещинами

Коэффициент, учитывающий вид бетона:


jb1 = 1 - bRb gb2 = 1 - 0,01×14,5×0,9 = 0,870.


Здесь β = 0,01 для тяжелого бетона; Rb следует брать в МПа.

Коэффициент приведения площади сечения арматуры к площади сечения бетона (отношение модулей упругости):



Коэффициент поперечного армирования сечения:


.


Коэффициент, учитывающий влияние поперечной арматуры:


; .


Условие проверки (ф-ла (72) СНиП [2]):


.

Q = 470,27 кН < 661,21 кН.


Проверка выполняется, значит прочность сечения на действие поперечной силы по наклонной полосе между наклонными трещинами обеспечена.

Все необходимые расчеты теперь выполнены, и мы размещаем стержни арматуры в соответствии с принятым шагом, показывая их на арматурных чертежах. Это пригодится для следующего расчёта, который будет частично графическим.


4.5 Обрыв продольной арматуры в пролёте


В целях экономии металла часть продольной арматуры (не более 50% расчётной площади) может не доводиться до опор, а обрываться в пролете там, где она уже не требуется согласно расчету прочности элемента по нормальным стержням.

Обрываемые стержни должны быть заведены за место своего теоретического обрыва на некоторую длину заделки w, на протяжении которой для гарантии условия прочности наклонных сечений на действие изгибающего момента отсутствие обрываемых стержней компенсируется поперечной арматурой.

А. Построение эпюры материалов. Вычисляем значение изгибающих моментов, воспринимаемых нормальным сечением железобетонного элемента с полным количеством арматуры (4 стержня) и с уменьшенным ее количеством (2 стержня), используя формулу:


Мs = Rs As zb = 36,5×As zb,


где zb - плечо внутренней пары сил (расстояние от равнодействующей усилий в продольной арматуре до равнодействующей усилий в сжатой зоне):


zb = h0 - 0,5х,


где х - высота сжатой зоны элемента, определяется из условия равенства равнодействующих усилий в растянутой и сжатой зонах сечения:


.


Результаты расчёта приведены в таблице 4.2.


4.6 Определение несущей способности нормальных сечений ригеля


Таблица 4.2.

Армирование

Аs, см2

h0, см

х, см

zb, см

Мs, кН×см

М, кН×см

4Æ25

19,63

73,25

18,3

64,1

45 927

36 785

2Æ25

9,82

76

9,16

71,42

25 595

-

4Æ22

15, 20

73,75

14,17

66,67

36 989

31 955

2Æ22

7,60

76,5

7,09

72,96

20 239

-

4Æ18

10,18

74,78

9,49

70,04

26 024

20 676

2Æ18

5,09

77

4,75

74,63

13 865

-


В последней графе таблицы приведены расчётные значения изгибающих моментов от внешней нагрузки. Для обеспечения прочности нормального сечения необходимо соблюдение условия: Мs ³ М.

Для дальнейшего продолжения расчёта необходимо уже начертить схему поперечного армирования ригеля и эпюры внутренних усилий.

Найденные значения несущей способности нормального сечения откладываем на эпюре изгибающих моментов от внешних нагрузок. Точки, в которых отложенные ординаты, соответствующие уменьшенному количеству арматуры, пересекаются с эпюрой моментов от внешних нагрузок, являются местами теоретического обрыва продольных стержней.

Измеряем координаты этих точек от опор l, соответствующие им значения поперечных сил Q и шага поперечной арматуры S; заносим эти данные в таблицу 4.3 Наносим штриховку в зонах запаса прочности, в результате получаем так называемую эпюру материалов.

Б. Определение длины заделки арматурных стержней.

Длина стержня w, на которую он должен быть заведён за место своего теоретического обрыва, определяется из условия обеспечения прочности наклонного сечения на действие изгибающего момента:


,


где

D - диаметр продольного стержня,

Q - расчётное поперечное усилие в месте теоретического обрыва стержня,

qsw - интенсивность поперечного армирования (частично она определена в п.4.3.3):


,


Кроме того, из условия обеспечения надежной анкеровки расстояние w принимается не менее 20 диаметров продольного стержня: w ³ 20D.

Определение длины заделки w продольных арматурных стержней производится в табл.4.3 Принятая в качестве окончательной длины заделки w0 (кратно 50 мм) указывается на эпюре материалов.

Обратите внимание, что величина w0 является минимально необходимой; фактически обрываемый стержень необходимо завести за ближайший продольный стержень на величину не менее диаметра обрываемого стержня D.


4.7 Определение длины заделки арматурных стержней


Таблица 4.3.

#

l, мм

Q, кH

S, см

qsw, кH/см

D, см

w, cм

20D, см

w0, см

1

1250

110

25

1,172

2,5

59,4

50

60

2

2975

110

25

1,172

2,5

59,4

50

60

3

500

240

25

1,172

2,2

113,4

44

115

4

500

200

25

1,172

2,2

96,3

44

100

5

2375

100

25

1,172

1,8

51,7

36

55

 

4.8 Определение экономического эффекта от снижения расхода арматуры


Таблица 4.4.

Расположение

D,

мм

Длина сэкономленной

арматуры, мм

Масса сэкономленной

арматуры

Общее кол-во ригелей в здании, шт.

Масса сэкономленной арматуры в здании, т

ригеля

арматуры

ед. дл., кг/м

общей длины, кг

итого на ригель, кг

крайний

ригель

верхняя

22

2× (200+250×8+500×8+250×4) = 14400

2,984

42,97

64,17

10×14 = 140

8,984

нижняя

25

2× (200+250×3) +2× (250×7+60) = 5520

3,840

21, 20

средний

ригель

верхняя

22

2×2× (250×4 + 500×3) = 10 000

2,984

29,84

42,31

10×14 = 140

5,923

нижняя

18

2×2× (60 + 250×6) = 6240

1,998

12,47


Итого на здание, т:

14,907

Стоимость 1 т арматуры: 15 500 руб.

Всего экономия, руб.:

231059

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.