скачать рефераты

МЕНЮ


Проектирование 9-этажного дома

Помещение с постоянным пребыванием людей в соответствии с санитарными нормами должно иметь, как правило естественное освещение.

Естественное освещение должно удовлетворять многим требованиям, которые можно разделить на количественные и качественный. Количественные определяются уровнем необходимой освещенности; качественные спектральным составом света и распределением его в пространстве.

Освещение помещений естественным светом небосвода, проникающим через световые проемы в наружных ограждающих конструкциях, называется естественным освещением. Внутри здание освещение осуществляется с помощью боковых окон, верхних фонарей или и тем и другим одновременно.


7.2.1 Расчет естественного освещения

Органы зрения человека наиболее привычны к естественному солнечному свету, имеющему благоприятный сектор. Естественный солнечный свет оказывает положительное психологическое влияние благодаря ощущению связи с окружающем миром и положительного действия ультрафиолетовых лучей солнца, которые задерживаются при прохождении через обычное стекло и поэтому внутрь помещения практически не проникают. Поэтому при проектировании естественной освещенности необходимо обеспечить проникновение в производственное или жилое помещение ультрафиолетовой составляющей естественного лучевого потока.

В основных помещениях жилых домов значение КЕО должно обеспечиваться на уровне пола.

КЕО - это коэффициент естественной освещенности определяемый отношением естественной освещенности, создаваемой в некоторой точке заданной плоскости внутри помещения светом неба (непосредственным или после отражения) к одновременному значению наружной горизонтальной поверхности, создаваемой светом полностью открытого небосвода, выражается в процентах.

Расчет естественного освещения производиться без учета мебели, оборудования и других затеняющих предметов. Устанавливаемые расчетом размеры световых проемов допускается изменять на 10%.

Неравномерность естественного освещения жилых зданий с боковым освещением не нормируется.

При боковом естественном освещении расчет площади световых проемов выражается следующим образом:

,где

- площадь пола помещения, м2;

 - нормируемое значение коэффициента естественной освещенности (КЕО), %;

 - коэффициент запаса, =1,2 для жилых комнат с уклонам наклона светопропускающего материала к горизонту

 - коэффициент, учитывающий затемнение окон противостоящими зданиями,

=1 ,так как напротив помещения здания отсутствуют.

- световая характеристика окна, зависит от характеристик помещени,

=15

- общий коэффициент светового пропускания;

r1- коэффициент, учитывающий повышение КЕО при боковом освещении благодаря свету, отраженному от поверхности помещения, r1= 1.6.

Нормированное значение КЕО, согласно СНиП 23-05-95 “Естественное и искусственное освещение” , для здания, расположенного в V поясе светового климата, определяется по формуле:


,


где - нормированное значение КЕО для V светового пояса, =0.7 %;

- коэффициент светового климата =0.8

Таким образом


 = 0.7*0.8 = 0.56.


Значение общего коэффициента светопропускания рассчитывается следующим образом:


, где


- коэффициент светопропускания материала,  = 0.8 (стекло двойное оконное листовое);

 - коэффициент, учитывающий потери света в переплетах, =0.75 (двойные разделенные переплеты);

 - коэффициент, учитывающий потери света при несущих конструкциях,  = 1;

 - коэффициент, учитывающий потери света в солнцезащитных конструкциях, = 1;

- коэффициент, учитывающий потери света в защитной сетке фонаря, =1.

 

 = 0.8·0.75·1·1·1=0.60


С учетом выбранных коэффициентов определим предварительную площадь световых проемов:

Для комнаты площадью 5.65·3.4=19.2 м2



Таким образом для нормальной освещенности помещения требуется одно окно общей площадью 3,76м2 .Сравнивая требуемую площадь окон и запроектированную (3,78 м2) ,убеждаемся ,что условие достаточности естественного освещения выполняется.


7.2.2 Расчет искусственного освещения

Искусственное освещение это важный фактор, от освещения помещения зависит настроение человека его работоспособность, внимание, а также утомляемость, поэтому в любом помещении, где пребывают люди, освещение играет важную роль.

Искусственное освещение принимается для выполнения работ в темное время суток, либо в помещения где недостаточно естественного освещения или оно противопоказанно по техническим соображениям.

Существуют следующие виды искусственного освещения; рабочие, аварийное, эвакуационное и охранное.

Рабочие освещение следует предусматривать для всех помещений зданий, а также участков открытых пространств предусмотренных для работ, прохода, людей и движения транспорта.

По конструктивному исполнению искусственное освещение проектируется в двух исполнениях: общее и комбинированное.

Общее освещение может быть равномерным или локализованным и предназначено для освещения всего пространства. При общем локализированном освещении светильники размещают сверху. Это позволяет создать равномерную освещенность.

Комбинированное освещение - освещение при котором к общему освещению добавляют местное. При расчете общего освещения и освещения горизонтальной поверхности основным методом является метод коэффициента использования светового потока. Этот метод позволяет уменьшить световой поток и используется для определения мощности применяемых ламп, если задано их количество, или наоборот.

При проектировании искусственного, освещения в данном случае необходимо рассчитать только общее освещение, так как местное не предусмотрено. Для расчета используем метод коэффициента использования светового потока, который предназначен для расчета общего равномерного освещения горизонтальных поверхностей при отсутствии крупных затемняющих предметов.

Высота помещения Н = 3,0 м, расстояние от светильника до перекрытия Но = 0,3 м, высота светильника над полом Нс = 2,7 м, высота расчетной поверхности над полом Нп = 0,4м, расчетная высота Нр = 2,3м. Основное требование при выборе высоты расположения светильников – доступность для обслуживания.

Определяем индекс помещения:


i = А*В/Hp(А+В)


где А – глубина помещения, 5,61м;

В – ширина помещения, 3,4м;

Нр – высота светильника над рабочей поверхностью, 2м.


i = 5,61·3,4/2,3·(5,61+3,4)= 0,93


по приложению СНиП «Естественное и искусственное освещение», оцениваем значение коэффициентов отражения поверхностей:

потолка ρп = 0,7, стен ρс = 0,5, расчетной поверхности ρр = 0,1,

Зная эти данные находим по приложению значение коэффициента использования светового потока η = 44% = 0,44,

По приложению СНиП 23-05-95 выбираем типовую кривую силы света «равномерная», для нее выбираем рекомендуемое значение λ = 2 для светильников. Из соотношения для определения расстояния между соседними светильниками определяем L = Нр* λ = 4.6 м. расстояние от крайних светильников до стены l = (0,3÷0,5)* L = 1,4÷2.3м.

Определяем количество светильников в одном ряду


Nс = (А - 0,6 L)/ L +1 = (5.61– 0,6·4.6)/4.6 +1 = 2 светильника,


определим количество рядов светильников


Nр = (В - 0,6 L)/ L +1 = (3.4 – 0,6·4.6)/4.6 +1 = 1 ряд.


Общее количество светильников N = Nс*Nр = 2 светильника.

По приложению находим нормируемую освещенность Е = 150 люкс –обзор окружающего пространства, коэффициент запаса по СНиП кз = 1,2,

Определим мощность светового потока по формуле:


Ф = Е·кз·S·z/Nη,·


где, z – коэффициент неравномерности освещения 1,1,


Ф = 100·1,2·19·1,1/(2·0,44) = 2850 лм,


установим один светильник с двумя лампами Ф = 2500 лм

7.4 Расчёт времени эвакуации при пожаре

7.7 Инженерное решение пожарной профилактики

Обеспечение безопасности людей в зданиях, особенно в зданиях с массовым пребыванием людей, остается одной из основных задач архитекторов и строителей. В настоящее время по официальным данным на пожарах в нашей стране ежедневно погибает 8000 человек. Пожар — самая распространенная причина катастроф в зданиях, им сопровождаются в большинстве случаев и катастрофы в здании, вызванные и другими причинами. Пожар вызывает чрезвычайно быстрое появление многообразных факторов, даже кратковременное воздействие которых на людей опасно для жизни и здоровья. Поэтому, пожар является, как бы, расчетной ситуацией для проектирования условий безопасности людей в зданиях в аварийных ситуациях.

Пожарная безопасность здания должна формироваться уже при разработке объемно¾планировочных и конструктивных решений, поскольку они определяют эффективность систем предотвращения пожара, противопожарной защиты построенного здания и необходимые организационно¾технические мероприятия при его эксплуатации. Предотвращение пожара достигается максимально возможным применением негорючих и трудно горючих веществ и материалов, и наиболее безопасным способом их размещения, изоляцией и их защитой пожарного оборудования и технических устройств. Противопожарная защита обеспечивается средствами пожаротушения, применением основных строительных конструкций с требуемыми пределами огнестойкости и распространения огня, строительными и техническими средствами; средствами; системой противопожарной защиты и организацией своевременной эвакуации людей из здания или в зоны безопасного пребывания людей во время пожара. Организационно¾технические мероприятия включают прежде всего организацию пожарной охраны здания, его оборудования и технологических процессов, происходящих в нем; разработку мероприятий по необходимым действиям в случае возникновения пожара и вынужденной эвакуации людей.

Эвакуации людей из помещения и всего здания в настоящее время наиболее кардинальная мера обеспечения их безопасности при возникновении пожара. Эвакуации людей при пожаре может состоять из следующих этапов:

1.Эвакуация из помещения. Если имеется возможность, людям необходимо эвакуироваться сразу же наружу, вне здания. Если же такой возможности не нет, то люди эвакуируются сразу же в фойе, вестибюль или коридор, имеющий выход непосредственно наружу или в лестничную клетку. Таким образом, если эвакуация людей из помещения сразу же наружу невозможна, то она будет проводиться по следующим этапам.

2.Эвакуация из фойе, вестибюля или коридора или в лестничную клетку, имеющую выход непосредственно наружу.

3.Эваккуация по лестничной клетке наружу. Те есть участки коммуникационных путей в зданиях и в их помещениях, которые могут быть использованы для движения людей в описанной последовательности эвакуации из помещения наружу, являются эвакуационными путями, а дверные проемы между ними¾эвакуационными выходами. Очевидно, что не каждый дверной проем коммуникационных путей, обеспечивающий связь между отдельными помещениями здания во время его обычной эксплуатации, может входить в состав эвакуационных путей и выходов. Например, проход из помещения в соседнее помещение, которое не имеет непосредственного выхода наружу или в коридор, ведущий в лестничную клетку, не может рассматриваться в качестве эвакуационного пути, поскольку он не обеспечивает возможности выхода людей из здания.

Последовательность участков эвакуационных путей и выходов, которыми пользуется человек или группа людей для своего движения от места их нахождения в момент начала эвакуации до выхода из здания, образуют эвакуационный маршрут этих людей. Эвакуационные маршруты отдельных людей или групп, нанесенных на план эвакуационных путей, образуют схему эвакуации из помещений или здания в целом.

Расчетное время эвакуации людей из квартир и жилого дома устанавливают по расчету времени движения одного или двух людских потоков через эвакуационные выходы от наиболее удаленных мест размещения людей.


7.8 Расчет времени эвакуации при пожаре


Основными параметрами, характеризующими процесс эвакуации из здания, являются: плотность D, скорость движения людского потока V, пропускная способность пути (выходов) Q, интенсивность движения q.

Кроме того, эвакуационные пути, как горизонтальные, так и наклонные, характеризуются свободной длинной ℓn и шириной δ движения.

Плотность людского потока D, состоящая из N людей, равна:


D = Nf / A


где А – площадь эвакуационного пути, м2; А = δ ´ ℓ;

f – площадь горизонтальной поверхности проекции человека.

Для взрослого человека в зимней одежде f=0,125м2. При D<0,05м2/м2 человек имеет полную свободу движения, при 0,05< D< 0,15 – человек не может свободно менять направление своего движения; при D> 0,15м2/м2 – люди практически начинают двигаться слитно.

Скорость движения людского потока V зависит от его плотности и вида пути. С увеличением плотности скорость движения уменьшается.

Интенсивность движения людского потока есть величина, равная:


q = D·V

Интенсивность движения не зависит от ширины пути и является характеристикой потока. Длина и ширина каждого участка определяется по проекту. Расчетное время эвакуации людей tp определяется как сумма времени движения людского потока по отдельным участкам пути:


tp = t1+t2+ …+ti.


Плотность людского потока D1 на первом участке пути, имеющем длину ℓ1 и ширину δi, равна:


D1=N1ƒ/ℓ1δ1


N1 - количество людей на первом участке, ƒ- средняя площадь горизонтальной проекции человека ƒ= 0,125м2.

Значение скорости Vi на участках пути, следующих после первого, принимаем по таблице в зависимости от значения интенсивности движения потока:


qi = qi-1∙δi-1/δi


где, δi; δi-1- ширина просматриваемого (i) и предшествующего

ему (i-1) участков пути, м;

qi; qi-1- значения интенсивности движения людского потока, м/мин.

Если qi ≤ qmax, то время движения по участку пути:


ti = ℓi/Vi


При этом значении qmax следует принимать равным:

для горизонтальных путей - 16,5 м/мин;

для дверных проемов - 19,6 м/мин;

по лестнице вниз - 16,0 м/мин;

по лестнице вверх - 11,0 м/мин.

Расчетная схема

Рассмотрим эвакуацию семьи из 3-х человек с трехкомнатной квартиры на пятом этаже. Средняя площадь горизонтальной проекции человека ƒ= 0,125м2.

Весь путь разделим на 7 участков:

1 участок

жилая комната 1, длина L=3.2м , ширина b=4,65м, эвакуируются 3 человека до выхода в коридор


D1 = 3·0,125/(4,65·3,2) = 0,025 м2 /м2 ,


по таблице определим V1 = 100 м/мин, q1 = 2.5 м/мин,

t1 = 3,2/100 = 0,032мин, qдв1 = 2.5·4.65/0,9 = 12,9 м/мин < qмах дв = 19,6 м/мин,

2 участок

1)                3 человека перемещаются по коридору L= 5 м, шириной b2=1.1 м до выхода из квартиры.


q2 = 12,9·0,9/1,1 = 10,6 м/мин < qмах гор = 16,5 м/мин,

D2 = 3·0,125/(5·1,1)= 0,07 м2 /м2 ,


по таблице определим V2 = 68 м/мин, t2 = 5/68 = 0,074мин,


qдв2=10.6·1,1/0,9=13 м/мин< qмах дв = 19,6 м/мин,

3 участок

по межквартирной площадке эвакуируются 5 человек (присоединилось два соседа), L=3.29 м, b3=1,97 м.

q3 =13·0,9/1,97 = 5,9 м/мин < qмах гор = 16,5 м/мин,

D3 = 5·0,125/(3,29·1,97) = 0,1 м2 /м2 ,


по таблице определим V3 = 94 м/мин, t3 = 3,29/94 = 0,035 мин,


qдв3 = 5,9·1,97/1,2 = 9,7 м/мин < qмах дв = 19,6 м/мин,

4 участок

по лестничной площадке перемещаются 5 человек до лестницы, L=4м, b4=1,97 м


q4 = 9,7·1,2/1,97 = 5,9 м/мин < qмах гор = 16,5 м/мин,

D4 =5·0,125/(4·1,97) = 008 м2 /м2 ,


по таблице определим V4 = 94 м/мин, t4 = 4/94 = 0,043 мин,


qдв3 = 6,3*1,1/0,9 = 7,7 м/мин < qмах дв = 19,6 м/мин,

5 участок

5 человек перемещаются по лестнице, L=2,4м, b5=1,2 м


q5 =5,9·1,97/1,2 = 9,7 м/мин < qмах гор = 16,5 м/мин,

D5 =5·0,125/(2,4·1,2) = 0,22 м2 /м2 ,


по таблице определим V5 = 92 м/мин, t5 = 2,4/92 = 0,026 мин,

6 участок

перемещаются по коридору на 1 этаже 5 человек, L=3,5м, b4=2,8 м


q6 = 5,9·1,2/2,8 =2,5 м/мин < qмах гор = 16,5 м/мин,

D6 =5·0,125/(2,8·3,54) = 006 м2 /м2 ,

по таблице определим V6= 100м/мин, t6 = 3,5/100 = 0,035 мин,


qдв4 = 2,5·2,8/1,2 = 5,8 м/мин < qмах дв = 19,6 м/мин,


7 участок

перемещаются 8 человек (добавились 3 соседа) по тамбуру до выхода на улицу ,L=1,7 м, b4=3,32 м


q7 = 2,5·1,2/3,32 =0,9 м/мин < qмах гор = 16,5 м/мин,

D7 =8·0,125/(1,7·3,32) = 0,18 м2 /м2 ,


по таблице определим V7= 100м/мин, t7 = 1,7/100 = 0,017 мин,

общее суммарное время  t = t1 + t2 + t3 + t4 + t5 + t6 + t7= 0,262 мин = 16сек.

Время эвакуации составило 16 сек. , что значительно меньше 2,5 мин, нормируемого времени для эвакуации из зданий объемом до 20 тыс.м3.

6.6 Безопасная эксплуатация грузоподъемных машин


В целях создания условий безопасного ведения работ действующие нормативы предусматривают различные зоны, потенциально действующих опасных зон:

·          зона монтажа конструкций;

·          зона обслуживания краном;

·          опасную зону путей;

·          зону работы подъемника;

·          опасную зону дорог.

6.6.1 Определение опасной зоны обслуживания краном


Зоной обслуживания краном или рабочей зоной крана называется пространство, находящееся в пределах линии описываемой крюком крана. Определяется, для башенных кранов, путем нанесения на план из крайних стоянок полуокружностей радиусом, соответствующим максимальному необходимому для работы вылету стрелы и соединения их прямыми линиями.

Зоной перемещения груза называется пространство, находящееся в пределах возможного перемещения груза, подвешенного на крюке крана. Для башенного крана границы зоны определяются суммой максимального рабочего вылета стрелы и ширины зоны, принимаемой равной половине длины самого длинного перемещаемого груза.

Опасная зона, возникающая от падения предметов при перемещении краном груза, определяется по формуле, предложенной Навоком А. П.


S = Ö h * [l * (1-cosa) + а]


где:

S – предельно возможный отлет конструкции в сторону от первоначального положения ее центра тяжести при свободном падении;

h – высота подъема конструкции над уровнем земли, монтажным горизонтом в процессе монтажа;

l – длина стропов;

a - угол между вертикалью и стропом;

а – половина длины конструкции.


S = Ö 18,25 * [3 * (1-0.86) + 3.6] = 8.5 м.

Опасной зоной работы крана называется пространство, где возможно падение груза при его перемещении с учетом вероятного рассеивания при падении.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.